Protein clumps in ALS neurons provide potential target for new therapies

Amyotrophic lateral sclerosis (ALS) is a neurological condition that affects motor neurons—the nerve cells that control breathing and muscles. Under a microscope, researchers have noticed that the motor neurons of patients with ALS contain excessive aggregation of a protein called TDP-43. Since TDP-43 proteins stuck in these aggregates can't perform their normal function, the scientists believe this build-up contributes to motor neuron degeneration, the hallmark of ALS. In a study publishing July 1, 2019 in Neuron, UC San Diego School of Medicine researchers discovered that prolonged cellular stress, such as exposure to toxins, triggers TDP-43 clumping in the cytoplasm of human motor neurons grown in a laboratory dish. Even after the stress is relieved, TDP-43 clumping persists in ALS motor neurons, but not in healthy neurons. The team then screened and identified chemical compounds (potential precursors to therapeutic drugs) that prevent this stress-induced, persistent TDP-43 accumulation. These compounds also increased the survival time of neurons with TDP-43 proteins containing an ALS-associated mutation. "These compounds could provide a starting point for new ALS therapeutics," said senior author Gene Yeo, Ph.D., professor at UC San Diego School of Medicine and faculty member in the Sanford Consortium for Regenerative Medicine.

Spotlight

Other News

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More