CRISPR Genome Editing Holds Back Triple-Negative Breast Cancer in Mice

Scientists at Boston Children’s Hospital and Northeastern University have developed a CRISPR genome editing system that suppresses the growth of triple-negative breast cancer (TNBC). A proof-of-principal study showed that a nanolipogel-delivered CRISPR system designed to target a known cancer gene halted tumor growth in a mouse model by 77%, without any evidence of toxicity to normal tissues. “Our results provide experimental evidence that in vivo CRISPR genome editing can halt TNBC tumor progression,” the team wrote in their published paper in the Proceedings of the National Academy of Sciences, which is titled, “Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel.” TNBC is the most aggressive of all the breast cancer types, and has the poorest prognosis, explained the researchers, headed by Peng Guo, PhD, researcher, and Marsha Moses, PhD, director of the vascular biology program, Boston Children’s Hospital. TNBC occurs more frequently in women under the age of 50 years, in African American women, and in those carrying the BRCA1 gene mutation. “Over 32,000 patients are estimated to be diagnosed with TNBC in the United States in 2019, representing 12% of all new breast cancer cases,” the team wrote. “The extremely aggressive and metastatic nature of TNBC, coupled with fewer treatment options, has resulted in the worst mortality rates among all breast cancer subtypes, highlighting an urgent and unmet clinical need for novel precision medicines to treat TNBC.”

Spotlight

Other News

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More