Genetically Encoded Frankenbody Lights Up Live Cell Imaging

Genengnews | July 05, 2019

Stitching together complementarity-determining regions CDRs and single-chain variable fragment scFv scaffolds, scientists based at Colorado State University and Tokyo Institute of Technology have built what they call a frankenbody. This hybrid creation can bind a common epitope tag, the linear HA epitope tag. Most notably, it works in living systems, where it can add distinctive labels to diverse proteins. In a recent study, it enabled the multicolor visualization of HA-tagged nuclear, cytoplasmic, membrane, and mitochondrial proteins. For many decades, scientists have cleverly exploited the selective tagging of natural antibodies to engineer antibody-based probes that can be used to purify and study different types of proteins within cells. One tried and true technique, epitope tagging, involves fusing an epitope to a protein of interest and using fluorescently labeled antibodies to make those proteins visible—but seldom in fixed, dead cells. Now, a new approach has been developed by cross-disciplinary team of researchers. Some of the researchers come from a lab led by Colorado State University’s Tim Stasevich; others, from a lab led by Tokyo Tech’s Hiroshi Kimura. Together, they have developed a genetically encoded probe expressly designed to work in living cells. We used the HA frankenbody [to track] single HA-tagged histones in U2OS cells and single mRNA translation dynamics in both U2OS cells and neurons,” the article’s authors wrote. “Together with the SunTag, we also track two mRNA species simultaneously to demonstrate comparative single-molecule studies of translation can now be done with genetically encoded tools alone. Finally, we use the HA frankenbody to precisely quantify the expression of HA-tagged proteins in developing zebrafish embryos.

Spotlight

With over 2,800 campaigns each year delivered through a team of 300+ digital, data, and technology specialists, Deck 7 is a first resource for B2B demand generation services for marketers worldwide.

Spotlight

With over 2,800 campaigns each year delivered through a team of 300+ digital, data, and technology specialists, Deck 7 is a first resource for B2B demand generation services for marketers worldwide.

Related News

MEDICAL

Pfizer and BioNTech Begin Rolling Submission of Biologics License Application for FDA Approval of COVID-19 Vaccine in the U.S

Pfizer, BioNTech | May 10, 2021

Pfizer Inc. and BioNTech SE confirmed today the filing of a Biologics License Application (BLA) with the US Food and Drug Administration (FDA) for approval of their mRNA vaccine to prevent COVID-19 in people aged 16 and above. Companies will send data to help the BLA to the FDA on a rolling basis in the coming weeks, along with a proposal for Priority Review. If the BLA has been completed and duly approved for review by the FDA, the FDA will set a target date for a determination under the Prescription Drug User Fee Act (PDUFA). The Pfizer-BioNTech COVID-19 Vaccine is now available in the United States under an Emergency Use Authorization (EUA) issued by the Food and Drug Administration (FDA) on December 11, 2020. Since then, the firms have distributed more than 170 million doses of the vaccine in the United States. The next step in the comprehensive FDA evaluation process is the submission of a BLA, which includes longer-term follow-up data for acceptance and approval. Pfizer and BioNTech started the BLA process by providing the nonclinical and clinical data needed to justify the licensure of the COVID-19 vaccine for use in people aged 16 and up. This covers the most recent analyses from the pivotal Phase 3 clinical trial, in which the vaccine's effectiveness and safety profile were detected up to six months after the second dose. In the coming weeks, the companies will submit the required manufacturing and facility details for licensure, completing the BLA. Pfizer and BioNTech have since submitted to expand the new EUA for their COVID-19 vaccine to cover individuals aged 12 to 15. The firms plan to send a supplemental BLA to facilitate vaccine licensure in this age group until the requisite data is available six months after the second vaccine dose. BioNTech and Pfizer collaborated to create the Pfizer-BioNTech COVID-19 Vaccine, which is built on BioNTech's patented mRNA technology. BioNTech is the European Union's Marketing License Holder, as well as the holder of emergency use authorizations or similar in the United States (along with Pfizer), the United Kingdom, Canada, and other countries in advance of a planned application for full marketing authorizations in these countries. The Pfizer-BioNTech COVID-19 Vaccine has not been authorized or licensed by the United States Food and Drug Administration (FDA), but it has been authorized for emergency use by the FDA under an Emergency Use Authorization (EUA) to prevent Coronavirus Disease 2019 (COVID-19) in people aged 16 and up. The emergency use of this product is only permitted for the duration of the declaration the circumstances justify the authorization of emergency use of the medical product under Section 564 (b) (1) of the FD&C Act until the declaration is terminated or the authorization is revoked sooner. About Pfizer At Pfizer, they utilize science and its global resources to deliver treatments to patients that significantly extend and change their lives. In the discovery, development, and manufacture of health care products, including innovative medicines and vaccines, they aim to set the benchmark for consistency, safety, and value. Every day, Pfizer colleagues collaborate in developing and emerging markets to advance wellness, prevention, treatments, and remedies for today's most feared diseases. As one of the world's leading innovative biopharmaceutical firms, they partner with health care providers, governments, and local communities to promote and improve access to reliable and affordable health care around the world. About BioNTech Biopharmaceutical New Technologies is a next-generation immunotherapy firm that is developing novel cancer and other severe disease therapies. For the accelerated production of new biopharmaceuticals, the company makes use of a diverse set of computational discovery and therapeutic drug platforms. Its oncology product candidates include individualized and off-the-shelf mRNA-based therapies, innovative chimeric antigen receptor T cells, bi-specific checkpoint immuno-modulators, targeted cancer antibodies, and small molecules from Fosun Pharma and Pfizer.

Read More

MEDICAL

TGen Selects MemVerge to Accelerate Idiopathic Pulmonary Fibrosis Research Discovery with Big Memory Technology

MemVerge | March 21, 2022

MemVerge™, the pioneers of Big Memory software, today announced that TGen, the Translational Genomics Research Institute, an affiliate of City of Hope, has selected MemVerge Memory Machine Big Memory virtualization software to accelerate time to discovery for Idiopathic Pulmonary Fibrosis (IPF), a disease which affects 100,000 people annually in the U.S. Using MemVerge technology, TGen is able to dramatically speed analytical processing by nearly 36% for single-cell RNA sequencing. As a nonprofit medical research institute, TGen researchers process single-cell RNA sequences to characterize cell transcriptomic profiles. The process can take up to six and a half hours to analyze a matrix of 30,000 genes by 114,000 cells. With consistently growing datasets, this processing time was preventing a desired time to discovery. The data required for analysis was simply too large to retain in traditional memory, and scaling capacity with dynamic random-access memory (DRAM) was too costly. TGen has instead deployed memory virtualization technology from MemVerge which virtualizes both DRAM and PMem (persistent memory) memory technologies, to increase the memory pool available for processing without requiring more high-cost DRAM. The solution further speeds TGen's genomics sequencing analysis with Memory Machine ZeroIO in-memory snapshots which capture multi-terabyte data sets at any point for rapid reloads at each stage of processing. The ZeroIO snapshot service is 1,000 times faster than the fastest storage snapshot to SSD and enables TGen to run processing workflows in parallel. This ensures that in the event of a system crash, in-memory snapshots are available to instantly re-start long running jobs without lengthy reloading. By utilizing the snapshotting and cloning capabilities of Memory Machine, we were able to parallelize the processing workflow, As a result, we can now save nearly 36% of computational time while also taking advantage of the big memory nodes. This will save a lot of time in downstream analysis." Glen Otero, Ph.D., Vice President of Scientific Computing at TGen. MemVerge Memory Machine has quickly resulted in research value for TGen, We have removed performance barriers from their research process so that they are able to perform vital, life-saving, research faster than ever possible. Now TGen is expanding the use of Big Memory technology across other research use cases where results and discoveries can produce findings for a healthier tomorrow." Jonathan Jiang, COO of MemVerge. MemVerge Memory Machine makes 100% use of available memory capacity while providing new operational capabilities to memory-centric workloads. Memory Machine answers the need for a modern in-memory computing model to support emerging applications that require real-time analytics, true in-memory computing, and fault-tolerant memory persistence to speed massive processing workloads. About MemVerge MemVerge is pioneering Big Memory Computing and Big Memory Cloud technology for the memory-centric and multi-cloud future. MemVerge® Memory Machine™ is the industry's first software to virtualize memory hardware for fine-grained provisioning of capacity, performance, availability, and mobility. On top of the transparent memory service, Memory Machine provides another industry first, ZeroIO™ in-memory snapshots which can encapsulate terabytes of application state within seconds and enable data management at the speed of memory. The breakthrough capabilities of Big Memory Computing and Big Memory Cloud Technology are opening the door to cloud agility and flexibility for thousands of Big Memory applications.

Read More

MEDICAL

Resilience and MD Anderson Launch Joint Venture to Accelerate Development and Manufacturing of Innovative Cell Therapies for Cancer

Resilience | June 07, 2022

National Resilience, Inc. (Resilience) and The University of Texas MD Anderson Cancer Center today announced the launch of a joint venture, the Cell Therapy Manufacturing Center, to accelerate the development and manufacturing of innovative cell therapies for patients with cancer. Uniting the strengths of Resilience and MD Anderson, the joint venture will advance its work within a culture of academic innovation alongside industrial expertise. The Cell Therapy Manufacturing Center will be based in a state-of-the art 60,000-square-foot manufacturing facility in the Texas Medical Center, with a team of 70 employees focused on process and analytical development as well as early-phase and clinical-stage Good Manufacturing Practices (GMP). The joint venture combines MD Anderson’s expertise in immunotherapy and cell therapies as well as a leading clinical trials infrastructure, with Resilience’s innovative biomanufacturing technologies, advanced analytics and a national network for developing and producing cell therapies. Together, the parties aim to accelerate the path of cell therapies to the clinic, while enabling scalability and a smooth transition to late-phase clinical and commercial activities. Cell therapies have had a dramatic impact for patients with certain cancers, but progress has been hampered by structural challenges, This novel joint venture was conceived to address those challenges by harnessing the complementary capabilities of two world-class organizations, allowing us to advance innovative programs to deliver impactful therapies to patients.” Jason Bock, Ph.D., Chief Executive Officer of the Cell Therapy Manufacturing Center. The joint venture will engage with MD Anderson researchers and external industry collaborators to advance new therapies through preclinical and clinical development, ensuring consistent and safe products that can be evaluated rapidly in clinical trials led by MD Anderson physicians. Resilience customers will be able to leverage this offering as part of the company’s growing network of biomanufacturing facilities that are flexible enough to scale projects from small-batch pre-clinical to large-scale commercial production. Resilience has 10 facilities across North America, with more than 1 million square feet of manufacturing space. The promise of cell therapies to help patients in need has been limited by a lack of innovation in biomanufacturing, This collaboration aims to overcome those hurdles by extending our network with this unique partnership, creating opportunities to incubate innovative ideas and provide cutting-edge biomanufacturing technologies and processes to researchers, with a goal of bringing more cell therapies to patients.” Rahul Singhvi, Sc.D., Chief Executive Officer of Resilience. The joint venture will advance the most promising cell therapy modalities to answer unmet clinical needs, including engineered tumor infiltrating lymphocytes (TILs), chimeric antigen receptor (CAR)-modified T cells, endogenous T cells (ETCs), engineered natural killer (NK) cells and other emerging technologies, for patients with hematological and solid tumors. MD Anderson researchers are leaders in the field of cancer cell therapy, responsible for advancing the translational and clinical development of many of the currently approved and experimental cell therapies. The joint venture is built upon MD Anderson’s Biologics Development platform, formerly part of the institution’s Therapeutics Discovery division. Current strategic collaborations with MD Anderson’s Biologics Development platform will continue; collaborative relationships with MD Anderson’s Therapeutics Discovery division, as well as physicians and scientists across the institution, also will be maintained. We believe in the tremendous potential of cell therapies to deliver solutions that offer cures, not merely prolonged survival. Resilience offers unique capabilities that make it an ideal choice for unlocking that potential and accelerating impactful cell therapies, Our mission at MD Anderson is to end cancer, and this joint venture is a strategic step toward realizing that goal.” Ferran Prat, Ph.D., J.D., senior vice president for Research Administration and Industry Relations at MD Anderson. About Resilience Resilience is a technology-focused biomanufacturing company dedicated to broadening access to complex medicines. Founded in 2020, the company is building a sustainable network of high-tech, end-to-end manufacturing solutions to ensure the treatments of today and tomorrow can be made quickly, safely, and at scale. Resilience seeks to free its partners to focus on the discoveries that improve patients’ lives by continuously advancing the science of biopharmaceutical manufacturing and development.

Read More