AVM Biotechnology has FDA Approval for Clinical Trials for Promising New Cancer Treatment

PR Newswire | April 14, 2020

Seattle's AVM Biotechnology announces clinical trial approval for AVM0703, an exciting new drug to treat terminal no-option Non-Hodgkins Lymphoma, Acute Lymphocytic Leukemia and Chronic Lymphocytic Leukemia. We are seeking patients to begin Phase I/II trials. Compassionate use will be considered under US FDA guidelines. More information can be found here: clinicaltrials.gov. AVM0703 works by supercharging and mobilizing the immune cells within all of us. When a patient is treated with AVM0703 supercharged immune cells (natural killer T-cells, gamma delta T cells and dendritic cells) invade and destroy tumors more powerfully than untreated immune cells. Because of its mechanism of action, AVM0703 is also a potential treatment for viruses like COVID-19. Within 2-7 days after treatment a patient will know whether they have responded. If there is no response that leaves other treatment options open.

Spotlight

Successful compound management and biological sample management stand as key enablers within the drug discovery process. Computerized inventory systems and sample cataloguing make the use of IT equipment and fluid collaboration between hardware and software critical to both divisions. However, various systems in the pharma industry can speak in conflicting languages which complicates communication and data exchange in various verticals including in compound and biosample management. Various organisations have arisen to help standardise and champion interoperability through setting criteria.

Spotlight

Successful compound management and biological sample management stand as key enablers within the drug discovery process. Computerized inventory systems and sample cataloguing make the use of IT equipment and fluid collaboration between hardware and software critical to both divisions. However, various systems in the pharma industry can speak in conflicting languages which complicates communication and data exchange in various verticals including in compound and biosample management. Various organisations have arisen to help standardise and champion interoperability through setting criteria.

Related News

CELL AND GENE THERAPY

Vizgen Releases Commercial MERSCOPE Platform

Vizgen | August 31, 2021

Vizgen, the life science company dedicated to improving human health by visualizing single-cell spatial genomics information, today announced shipment of the first commercial MERSCOPETM Platforms, marking the successful start of their limited summer release program. These first platforms are being purchased by leading research institutes including the Salk Institute, the University of California, Irvine, and the Beth Israel Deaconess Medical Center. Vizgen will continue shipping a limited number of commercial instruments for the next several months before releasing MERSCOPE to the U.S. market at large in late 2021. MERSCOPE is the first commercially available high-plex single-cell spatial genomics platform, and the only platform for MERFISH technology. Developed in the laboratory of Dr. Xiaowei Zhuang, a Howard Hughes Medical Institute Investigator, and David B. Arnold, Jr. Professor of Science at Harvard University, MERFISH provides the highest detection efficiency available for spatially profiling gene expression across whole tissues and resolving individual transcripts with nanometer-scale resolution through combinatorial labeling, sequential imaging, and error-robust barcoding. “This is a revolutionary time for the field of genomics. Researchers across the country are now able to access the spatial dimension to answer new kinds of scientific questions and make significant biological discoveries,” said Terry Lo, President and CEO of Vizgen. “Profiling the expression of hundreds of genes, in hundreds of thousands of cells, for hundreds of millions of transcripts all while retaining the spatial information within the tissue architecture has never been done before. What was previously unimaginable, MERSCOPE now makes routine.” About Vizgen Vizgen is dedicated to pioneering the next generation of genomics, providing tools that demonstrate the possibilities of in situ single cell spatial genomics, setting the standard for the spatial genomics field. These tools are enabling researchers to gain new insight into the biological systems that govern human health and disease with spatial context. The company's MERSCOPETM platform enables massively multiplexed, genome-scale nucleic acid imaging with high accuracy and unrivaled detection efficiency at subcellular resolution. MERSCOPE provides transformative insight into a wide range of tissue-scale basic research and translational medicine in oncology, immunology, neuroscience, infectious disease, developmental biology, cell and gene therapy, and is an essential tool for accelerating drug discovery and development.

Read More

INDUSTRIAL IMPACT

BioNTech and Medigene Announce Global Collaboration to Advance T Cell Receptor Immunotherapies Against Cancer

BioNTech SE | February 22, 2022

BioNTech SE and Medigene AG a clinical-stage immuno-oncology company focusing on the development of T cell immunotherapies, announced that they have entered a multi-target research collaboration to develop T cell receptor (TCR) based immunotherapies against cancer. The initial term of the collaboration is three years. Medigene will contribute its proprietary TCR discovery platform for the development of TCRs against multiple solid tumor targets nominated by BioNTech. Medigene’s automated, high throughput TCR discovery platform is designed to bypass central tolerance to yield high affinity TCRs. T cell therapy has become a disruptive medical innovation in the treatment of patients with cancer. Engineered TCR-modified T cells (TCR-T cells) are reprogrammed to express a TCR that can recognize specific antigens only present on tumor cells, thereby enabling a precise and potent immune response to attack a patient’s tumor. “This collaboration with Medigene expands our cell therapy portfolio and TCR discovery capabilities, and further strengthens our ability to be a leader in the rapidly emerging field of engineered cell therapies. We look forward to working closely with Medigene to develop new treatments which address solid tumors with high unmet medical need.” Ugur Sahin, M.D., Chief Executive Officer and Co-Founder of BioNTech Prof. Dolores Schendel, Chief Executive Officer and Chief Scientific Officer at Medigene: “Medigene is at the forefront of the development of TCR-T therapies for oncology. The sale and licensing deal with BioNTech is an important validation from a global leading biotech company of our proprietary technologies to discover and characterize highly specific TCRs and empower resulting TCR-T cells to fight solid tumors. This partnership provides Medigene with meaningful financial resources to fuel our next generation development programs targeting potentially novel tumor-specific “dark matter” antigens, further tools to enhance T-cell-based immunotherapies, as well as additional potential strategic deals with future milestone payments and royalties.” BioNTech will acquire Medigene’s next generation preclinical TCR program, which combines TCR-4 of Medigene’s MDG10XX program targeting PRAME with Medigene’s proprietary PD1-41BB switch receptor technology. BioNTech will also obtain the exclusive option to acquire additional existing TCRs in Medigene’s discovery pipeline and will receive licenses to the company’s PD1-41BB switch receptor and precision pairing library. This has the potential to augment TCR cell therapy efficacy and can be applied to all BioNTech cell therapy programs. Under the terms of the agreement, Medigene will receive EUR 26 million upfront, as well as research funding for the period of the collaboration. BioNTech will be responsible for global development and hold exclusive worldwide commercialization rights on all TCR therapies resulting from this research collaboration. Medigene will be eligible to receive development, regulatory and commercial milestone payments up to a triple digit million EUR amount per program in addition to tiered deferred option payments on global net sales for products based on TCRs arising from the collaboration and royalties on products utilizing at least one of the licensed technologies. About BioNTech Biopharmaceutical New Technologies is a next generation immunotherapy company pioneering novel therapies for cancer and other serious diseases. The Company exploits a wide array of computational discovery and therapeutic drug platforms for the rapid development of novel biopharmaceuticals. Its broad portfolio of oncology product candidates includes individualized and off-the-shelf mRNA-based therapies, innovative chimeric antigen receptor T cells, bi-specific checkpoint immuno-modulators, targeted cancer antibodies and small molecules. Based on its deep expertise in mRNA vaccine development and in-house manufacturing capabilities, BioNTech and its collaborators are developing multiple mRNA vaccine candidates for a range of infectious diseases alongside its diverse oncology pipeline. BioNTech has established a broad set of relationships with multiple global pharmaceutical collaborators, including Genmab, Sanofi, Bayer Animal Health, Genentech, a member of the Roche Group, Regeneron, Genevant, Fosun Pharma and Pfizer. About Medigene Medigene AG (FSE: MDG1, ISIN DE000A1X3W00, Prime Standard) is a publicly listed biotechnology company headquartered in Planegg/Martinsried near Munich, Germany. With its scientific expertise, Medigene is working on the development of innovative immunotherapies to enhance T cell activity against solid cancers in fields of high unmet medical need. Medigene’s pipeline includes preclinical as well as clinical programs in development. Medigene’s strategy is to develop its own therapies towards clinical proof-of-concept. In addition, the Company offers selected partners the opportunity to discover and develop therapies on the basis of its proprietary technology platforms. In return for such partnerships, Medigene expects to receive upfront and milestone payments as well as research and development funding and royalties on future product sales. About Medigene’s TCR-T cells T cells are at the center of Medigene’s therapeutic approaches. With the aid of Medigene’s immunotherapies the patient’s own defense mechanisms are activated, and T cells harnessed in the battle against cancer. Medigene’s therapies arm the patient’s own T cells with tumor-specific T cell receptors (TCRs). The resulting TCR-T cells should thereby be able to detect and efficiently kill cancer cells. About Medigene’s PD1-41BB switch receptor Checkpoint inhibition via PD1-PDL1 pathway: Solid tumor cells are known to be sensitive to killing by activated T cells. Tumor cells can escape this killing activity by expressing inhibitory molecules, so-called ‘checkpoint proteins’, such as Programmed Death Ligand 1 (PD-L1) on their surface. When this occurs, activated T cells which express PD-1, the natural receptor for PD-L1, are inactivated. The expression of PD-L1 by tumors represents an adaptive immune resistance mechanism that can lead to tumor survival and growth. About Medigene’s precision pairing library T cell receptors (TCRs) consist of an alpha and a beta chain, which together act as a receptor on the cell surface of T cells. Medigene's therapies aim to equip the patient's own T cells with tumor-specific TCRs. The resulting TCR-T cells should thereby be able to detect and efficiently kill cancer cells. The precision pairing library allows selection of specific modifications in each chain of a TCR so that the alpha and beta chains preferentially pair with each other, with the result that improved TCR surface expression and/or functionality is achieved.

Read More

Alligator Bioscience presents positive biomarker data demonstrating proof of mechanism in mitazalimab clinical Phase I study

PR Newswir | September 04, 2020

Alligator Bioscience (Nasdaq Stockholm: ATORX) announced today biomarker data from a recently performed clinical Phase I study of the drug candidate mitazalimab, its wholly owned CD40 antibody in development primarily for the treatment of pancreatic cancer. The data will be presented today at the scientific conference PEGS: The Essential Protein Engineering Summit being held virtually August 31- September 4, 2020."The presented biomarker data confirm the proof of mechanism and strengthen our belief in mitazalimab as a powerful therapeutic agent. The observed induction of PD-L1-genes supports that mitazalimab has a potential to make tumors more responsive to PD-1 therapy. This is a very important factor and provides an opportunity for a clear path to the market and for adding benefit to patients," commented Per Norlén, CEO at Alligator Bioscience.The study identified a large number of upregulated genes after treatment with mitazalimab, such as PD-L1, which supports a clinical development plan for mitazalimab in combination studies with PD-1 inhibition. Furthermore, it was demonstrated that RNA sequencing can be successfully used to discover pharmacodynamic biomarkers following CD40 activation with mitazalimab.

Read More