USDA Approves Verdecas HB4 Drought Tolerant Soybeans

August 14, 2019 | 68 views

The U.S. Department of Agriculture USDA has given its approval to Verdeca for HB4 droughttolerant soybeans which will allow for commercialization in the U.S. market. The USDA approval comes two years after the U.S. Food and Drug administration approved Verdecas HB4 trait in 2017.

Spotlight

AusBiotech

AusBiotech is Australia's Biotechnology Industry Organisation, which represents over 3,000 members, covering the human health, agricultural, medical device, bioinformatics, environmental and industrial sectors in biotechnology.

OTHER ARTICLES
MEDTECH

Top 10 biotech IPOs in 2019

Article | September 22, 2022

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More
RESEARCH

Cell Out? Lysate-Based Expression an Option for Personalized Meds

Article | July 11, 2022

Cell-free expression (CFE) is the practice of making a protein without using a living cell. In contrast with cell line-based methods, production is achieved using a fluid containing biological components extracted from a cell, i.e., a lysate. CFE offers potential advantages for biopharma according to Philip Probert, PhD, a senior scientist at the Centre for Process Innovation in the U.K.

Read More
MEDICAL

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | August 16, 2022

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Selexis Cell Line Development Strategies

Article | February 11, 2020

In today’s biotechnology landscape, to be competitive, meet regulations, and achieve market demands, “we must apply Bioprocessing 4.0,” said Igor Fisch, PhD, CEO, Selexis. In fact, in the last decade, “Selexis has evolved from cloning by limiting dilution to automated cell selection to nanofluidic chips and from monoclonality assessment by statistical calculation to proprietary bioinformatic analysis,” he added. Single-use processing systems are an expanding part of the biomanufacturing world; as such, they are a major component of Bioprocessing 4.0. “At Selexis, we use single use throughout our cell line development workflow. Currently, we have incorporated single-use automated bioprocessing systems such as ambr® and the Beacon® optofluidic platform for accelerated cell line development. By using these systems and optimizing our parameters, we were able to achieve high titers in shake flasks. Additionally, the Beacon systems integrate miniaturized cell culture with high-throughput liquid handling automation and cell imaging. This allows us to control, adjust, and monitor programs at the same time,” noted Fisch.

Read More

Spotlight

AusBiotech

AusBiotech is Australia's Biotechnology Industry Organisation, which represents over 3,000 members, covering the human health, agricultural, medical device, bioinformatics, environmental and industrial sectors in biotechnology.

Related News

RNA-protein network may explain why melanoma grows more

Phys.org | October 29, 2018

With five-year survival rates being around 30 percent for patients with distant metastatic disease, cutaneous melanoma is the leading cause of skin cancer-related deaths. The major causes of the low survival rate for melanoma patients are the limited number of options for patients lacking the BRAF mutation and the intrinsic and acquired resistance to existing therapies. It is therefore essential to develop new therapeutic strategies to eradicate resistant cells and/or target patients irrespective of their driver mutations. A collaboration led by scientists from KU Leuven, Belgium, with Tokyo University of Agriculture and Technology (TUAT), Japan, revealed a new way to fight melanoma. They report that a melanoma-specific long non-coding RNA, named SAMMSON, interacts with the protein CARF to properly coordinate protein synthesis in both the cytosol and mitochondria of melanoma cells. This mechanism ensures the maintenance of proteostasis during cell growth, thus avoiding the induction of cell death.

Read More

Study reveals best use of wildflowers to benefit crops on farms

Phys.org | October 16, 2018

With bee pollinators in decline and pesky crop pests lowering yields, sustainable and organic farmers need environmentally friendly solutions. One strategy is to border crops with wildflower plantings to attract pollinators and pest predators. But scientists have suggested that such plantings may only be effective when farms are surrounded by the right mix of natural habitat and agricultural land. For the first time, a Cornell University study of strawberry crops on New York farms tested this theory and found that wildflower strips on farms added pollinators when the farm lay within a "Goldilocks zone," where 25 to 55 percent of the surrounding area contained natural lands. Outside this zone, flower plantings also drew more strawberry pests, while having no effect on wasps that kill those pests.

Read More

The government is going to counter ‘misinformation’ about GMO foods

bioteh | May 03, 2017

The Food and Drug Administration will fund a campaign to promote genetically modified organisms in food under a bipartisan agreement to keep the government funded through the end of September.

Read More

RNA-protein network may explain why melanoma grows more

Phys.org | October 29, 2018

With five-year survival rates being around 30 percent for patients with distant metastatic disease, cutaneous melanoma is the leading cause of skin cancer-related deaths. The major causes of the low survival rate for melanoma patients are the limited number of options for patients lacking the BRAF mutation and the intrinsic and acquired resistance to existing therapies. It is therefore essential to develop new therapeutic strategies to eradicate resistant cells and/or target patients irrespective of their driver mutations. A collaboration led by scientists from KU Leuven, Belgium, with Tokyo University of Agriculture and Technology (TUAT), Japan, revealed a new way to fight melanoma. They report that a melanoma-specific long non-coding RNA, named SAMMSON, interacts with the protein CARF to properly coordinate protein synthesis in both the cytosol and mitochondria of melanoma cells. This mechanism ensures the maintenance of proteostasis during cell growth, thus avoiding the induction of cell death.

Read More

Study reveals best use of wildflowers to benefit crops on farms

Phys.org | October 16, 2018

With bee pollinators in decline and pesky crop pests lowering yields, sustainable and organic farmers need environmentally friendly solutions. One strategy is to border crops with wildflower plantings to attract pollinators and pest predators. But scientists have suggested that such plantings may only be effective when farms are surrounded by the right mix of natural habitat and agricultural land. For the first time, a Cornell University study of strawberry crops on New York farms tested this theory and found that wildflower strips on farms added pollinators when the farm lay within a "Goldilocks zone," where 25 to 55 percent of the surrounding area contained natural lands. Outside this zone, flower plantings also drew more strawberry pests, while having no effect on wasps that kill those pests.

Read More

The government is going to counter ‘misinformation’ about GMO foods

bioteh | May 03, 2017

The Food and Drug Administration will fund a campaign to promote genetically modified organisms in food under a bipartisan agreement to keep the government funded through the end of September.

Read More

Events