Type 1 diabetes- Genetic risk reflected in gut microbiome

New research finds differences in the gut microbiome of children who are at high genetic risk of developing type 1 diabetes. The findings suggest that certain species of bacteria may have a protective effect in autoimmune conditions. These genes help create proteins with a key role in the immune system, and they account for 40 Percent of the genetic risk of type 1 diabetes.

Spotlight

Iveric Bio

Iveric Bio is a biopharmaceutical company focused on the discovery and development of novel treatment options for retinal diseases with significant unmet medical needs.

OTHER ARTICLES
Medical

Immunology: A New Frontier in Medical Science

Article | August 16, 2022

Introduction Recent developments in the bioengineering of monoclonal antibodies (mAbs) have revolutionized the treatment of numerous rheumatic and immunological disorders. Currently, several immunological disorders are successfully being targeted and treated using innovative medical techniques such as immunotherapy. Leading companies are increasingly investing in research activities to expand the usage and application of immunology for the treatment of various infectious diseases, including multiple sclerosis, inflammatory bowel disorders, lupus, and psoriasis, leading companies are increasingly investing in research activities. Today, the efforts of researchers in immunology, with a long history of study and research, have borne fruit, as bioengineered mAbs are now being employed in clinical practices. Accelerating Investments: Paving the Way for Immunology The increasing prevalence of infectious diseases, cancer, and immune-mediated inflammatory disorders (IMIDs) is raising the need for more precise classification and an in-depth understanding of the pathology underlying these ailments. Numerous leaders in the biotechnology domain are thus focusing on undertaking numerous strategies, such as new facility launches and collaborations, to address the need by finding deeper inroads into immunology and its use in disease treatments. For instance, in 2022, the University of Texas MD Anderson Cancer Center announced the launch of a visionary research and innovation hub, the James P. Allison Institute, to find new roads in immunotherapy, develop new treatments, and foster groundbreaking science. These developments will result in better diagnosis through the use of selective biomarkers, and early detection of fatal diseases and their treatment, which will prevent complications from happening. Also, the identification of high-risk populations through a deeper understanding of genetic and environmental factors can assist in the prevention of disease through immunotherapy. The Way Forward Immunology has led to the development of biotechnology, making it possible to develop novel drugs and vaccines, as well as diagnostic tests, that can be used to prevent, diagnose, and treat a wide range of autoimmune, infectious, and cancerous diseases. With the rapid advancement in technology and the integration of artificial intelligence, immunology is finding its way into an array of domains and industries, encompassing several research areas including medicine, pharmaceuticals, agriculture, and space. Today, not only researchers but also leading biotech and pharmaceutical companies have recognized that conventional therapies with pharmaceutical and chemical products are being replaced by products derived from immunology. This is because they work well for health problems, are environmentally friendly, and are also emerging as a wealth-generating business in the medical field.

Read More
Medical

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | July 14, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More
MedTech

Advancement in Genomics Accelerating its Penetration into Precision Health

Article | September 22, 2022

Genomics is an interdisciplinary field of biology emphasizing the structure, editing, evolution, function, and mapping of genomes. It is creating deeper inroads across the precision health domain with the increasing introduction of advanced technologies such as quantum simulation, next-generation sequencing (NGS), and precise genome manipulation. As precision health focuses on providing the proper intervention to the right patient at the right time, genomics increasingly finds applications in human and pathogen genome sequencing in clinical and research spaces. Rising Hereditary Diseases Burden Paving the Way for Genomics in Precision Health In the last few years, a significant surge in the prevalence of diseases and ailments such as diabetes, obesity, baldness, and others has been witnessed across the globe. A history of family members with chronic diseases, such as cancer, diabetes, high blood pressure, hearing issues, and heart disease, can sometimes continue into the next generation. Hence, the study of genes is extensively being conducted for predicting health risks and early treatment of these diseases. It also finds use in CRISPR-based diagnostics and the preparation of precision medication for the individual. In addition, ongoing advancements in genomics are making it possible to identify different genetic traits that persuade people to more widespread diseases and health problems. The Emergence of Genomics Improves Disease Understanding Genomics refers to the study of the complete genetic makeup of a cell or organism. Increasing scientific research in the area substantially contributes to increasing knowledge about the human genome and assists in improving the ability to understand disease etiology, risk, diagnosis, treatment, and prevention. On account of these improvements, innovative genomic technologies and tools are being developed to enable better precision health not only for the individual but for various regional populations as well. The Way Forward With growing preference for personalized medicine and an increasing need for more accurate pathogen detection and diagnostics, genomics is gaining huge popularity across the precision health domain. Also, increasing research activities for developing novel high-precision therapeutics and rising importance of gene study in the prevention, diagnosis, and management of infectious and genetic diseases will further pave the way for genomics in the forthcoming years.

Read More
Medical

Laboratory Information Management System for Biotech Labs: Significance & Benefits

Article | August 16, 2022

If you have ever visited the testing laboratory of a large biotechnology company, you will be aware that managing the laboratory's operations single-handedly is no easy task. The greater the size of a lab, the more research and testing activities it must accommodate. A variety of diagnostic tests are prescribed for patients in order to detect various diseases. For example, it may include blood glucose testing for diabetics, lipid panel, or liver panel tests for evaluating cardiac risk and liver function, cultures for diagnosing infections, thyroid function tests, and others. Laboratory management solutions such as laboratory information management systems (LIMS) and other software play a significant role in managing various operational data at biotech laboratories. It is one of the important types of software developed to address thedata management and regulatory challenges of laboratories. The software enhances the operational efficiency of biotech labs by streamlining workflows, proper record-keeping, and eradicating the need for manually maintaining data. What Are the Benefits of Laboratory Information Management Software in Biotechnology? As the trends of digitization and technology continue to create deeper inroads into the biotechnology sector, a significant rise in the adoption of innovative medical software solutions, such as LIMS, is being witnessed for managing research data, testing reports, and post-research results globally. Here are a few reasons that are encouraging biotech facilities to adopt LIMS solutions Real-Time Data Collection and Tracking Previously, collecting and transporting samples was a tedious and time-consuming task. However, the adoption of LIMS with innovative tracking modules has made the job easier. The real-time sample tracking feature of LIMS has made it possible for personnel to collect the research data in real-time and manage and control the workflow with a few mouse clicks on the screen. Increase Revenue LIMS makes it possible to test workflows while giving users complete control over the testing process. A laboratory is able to collect data, schedule equipment maintenance or upgrades, enhance operational efficiency, and maintain a lower overhead with the help of the LIMS, thereby increasing revenue. Streamlined Workflow With its completion monitoring, LIMS speeds up laboratory workflows and keeps track of information. It assigns tasks to the specialist along with keeping a real-time track of the status and completion of each task. LIMS is integrated into the laboratory using lab information, which ultimately speeds up internal processes and streamlines the workflow. Automatic Data Exchange LIMS solutions store data in a centralized database. Automated transfer of data between departments and organizations is one of the major features of LIMS. Through its automated information exchange feature, LIMS improves internal operations, decreases the reporting time for data sharing, and assists in faster decision-making. Final Thoughts As the healthcare sector continues to ride the wave of digital transformation, biotech laboratories are emphasizing adopting newer technologies to keep up with the changes. Citing this trend, laboratory information management systems are becoming crucial for biotech and medical organizations for maintaining research data, instant reporting, and managing confidential, inventory, and financial data with centralized data storage.

Read More

Spotlight

Iveric Bio

Iveric Bio is a biopharmaceutical company focused on the discovery and development of novel treatment options for retinal diseases with significant unmet medical needs.

Related News

AI

eureKARE and DNAlytics Form Partnership to Develop a Proprietary AI Platform

eureKARE | July 07, 2021

eureKARE, a pioneering new company focused on financing and building next-generation biotechnology companies in the disruptive fields of the microbiome and synthetic biology, today announced an agreement with DNAlytics, a Belgian company applying data sciences to healthcare, to develop eureKARE's proprietary Artificial Intelligence (AI) platform to support its Biotech start-upstart-up studios, eureKARE. Unlike conventional start-upstart-up incubation methods, which begin with new science and then attempt to find an issue to address with it, eureKARE's methodology reverses this. eureKARE is committed to first finding an unmet need and then enlisting the best scientists and experts to provide an innovative solution to launch exciting new ventures. This process will be aided by eureKARE's one-of-a-kind AI platform, which will assist the business in identifying top academic researchers, locating new ideas and approaches in development, and scaling existing portfolio companies. About eureKARE eureKARE is a ground-breaking new company focusing on financing and establishing next-generation biotechnology start-ups in the microbiome and synthetic biology cutting-edge areas. eureKARE employs a two-step investing strategy to create long-term value. Through its biotech start-upstart-up studios eureKABIOME (Microbiome) and eureKASYNBIO, the company promotes translational research by developing and financing new companies based on high-value European science (Synthetic biology). In addition, the company aims to engage in more mature biotech companies. It will systematically propose to provide some liquidity to early investors, thus fulfilling a crucial demand in the European biotech sector. EureKARE has a fast-expanding portfolio of companies with the potential to disrupt the life sciences sector, led by its prominent founder, Alexandre Mouradian, and a pan-European team. About DNAlytics DNAlytics is based in Louvain-la-Neuve, Belgium, specializing in data science for the healthcare sector, including data management, bioinformatics, biostatistics, Machine Learning, and other Artificial Intelligence methods. DNAlytics products are utilized in clinical research, the creation of biotech drugs and medical devices, public health studies, and the monitoring and optimization of bio-manufacturing processes. In addition, DNAlytics assists a wide range of clients and partners in extracting scientifically sound observations and practical conclusions from complex data sets.

Read More

Gut Microbiome Donations from the Old Invigorate the Young

GEN | November 15, 2019

Youth may be wasted on the young, but not elderliness—not when the elderliness manifests in the gut as a mature microbiome. In experiments led by scientists in Singapore, gut microbes from old mice (24 months old) were transplanted into young, germ-free mice (6 weeks old). After eight weeks, the young mice had increased intestinal growth and production of neurons in the brain, known as neurogenesis. The research team, which was based at Nanyang Technological University (NTU), showed that the increased neurogenesis was due to an enrichment of gut microbes that produce a specific short chain fatty acid, called butyrate. The scientists suggest that butyrate helps the old mice counter some of aging’s debilitating effects. In addition, the scientists speculate that butyrate-enriched foods could help slow aging, benefiting the young—and possibly the old and butyrate-deprived, too.

Read More

Microbiome Influenced by Genetic Differences in Immune System

GEN | October 16, 2019

Scientists headed by a team at the University of Chicago have shown how genetic differences in the immune system can impact on the types of bacterial communities that colonize the gastrointestinal system. Their studies, in germ-free mice colonized with microbiomes from conventionally reared animals, found that while the makeup of the donor microbiome was the key factor in determining the recipient microbiome, genetic differences in the immune systems of the recipients also played a role. “When the input is standardized, you can compare mice of different genetic strains and see what these genetics do to the microbiome in recipient mice,” said Alexander Chervonsky, MD, PhD, who is a senior author of the team’s study, which is published in Cell Reports. “This approach allowed us to tell whether there was a genetic influence, and indeed there is.” Chervonsky and colleagues report their findings in a paper titled, “Polymorphic Immune Mechanisms Regulate Commensal Repertoire.” The bacteria that naturally live in and on us provide essential functions that are required for our very survival, the authors wrote. The composition of microbial communities varies between individuals and is influenced by a range of factors, including “… the mode of transmission during birth, breastfeeding, alimentary infections, and diet.” Previous studies have suggested that host genetics can also impact on microbial communities—identical twins tend to have more similar microbiomes than do non-identical twins—but, as the team continued, “ … two important questions remain unanswered: to what extent and which host’s polymorphic mechanisms are involved in shaping the repertoire of the commensals.”

Read More

AI

eureKARE and DNAlytics Form Partnership to Develop a Proprietary AI Platform

eureKARE | July 07, 2021

eureKARE, a pioneering new company focused on financing and building next-generation biotechnology companies in the disruptive fields of the microbiome and synthetic biology, today announced an agreement with DNAlytics, a Belgian company applying data sciences to healthcare, to develop eureKARE's proprietary Artificial Intelligence (AI) platform to support its Biotech start-upstart-up studios, eureKARE. Unlike conventional start-upstart-up incubation methods, which begin with new science and then attempt to find an issue to address with it, eureKARE's methodology reverses this. eureKARE is committed to first finding an unmet need and then enlisting the best scientists and experts to provide an innovative solution to launch exciting new ventures. This process will be aided by eureKARE's one-of-a-kind AI platform, which will assist the business in identifying top academic researchers, locating new ideas and approaches in development, and scaling existing portfolio companies. About eureKARE eureKARE is a ground-breaking new company focusing on financing and establishing next-generation biotechnology start-ups in the microbiome and synthetic biology cutting-edge areas. eureKARE employs a two-step investing strategy to create long-term value. Through its biotech start-upstart-up studios eureKABIOME (Microbiome) and eureKASYNBIO, the company promotes translational research by developing and financing new companies based on high-value European science (Synthetic biology). In addition, the company aims to engage in more mature biotech companies. It will systematically propose to provide some liquidity to early investors, thus fulfilling a crucial demand in the European biotech sector. EureKARE has a fast-expanding portfolio of companies with the potential to disrupt the life sciences sector, led by its prominent founder, Alexandre Mouradian, and a pan-European team. About DNAlytics DNAlytics is based in Louvain-la-Neuve, Belgium, specializing in data science for the healthcare sector, including data management, bioinformatics, biostatistics, Machine Learning, and other Artificial Intelligence methods. DNAlytics products are utilized in clinical research, the creation of biotech drugs and medical devices, public health studies, and the monitoring and optimization of bio-manufacturing processes. In addition, DNAlytics assists a wide range of clients and partners in extracting scientifically sound observations and practical conclusions from complex data sets.

Read More

Gut Microbiome Donations from the Old Invigorate the Young

GEN | November 15, 2019

Youth may be wasted on the young, but not elderliness—not when the elderliness manifests in the gut as a mature microbiome. In experiments led by scientists in Singapore, gut microbes from old mice (24 months old) were transplanted into young, germ-free mice (6 weeks old). After eight weeks, the young mice had increased intestinal growth and production of neurons in the brain, known as neurogenesis. The research team, which was based at Nanyang Technological University (NTU), showed that the increased neurogenesis was due to an enrichment of gut microbes that produce a specific short chain fatty acid, called butyrate. The scientists suggest that butyrate helps the old mice counter some of aging’s debilitating effects. In addition, the scientists speculate that butyrate-enriched foods could help slow aging, benefiting the young—and possibly the old and butyrate-deprived, too.

Read More

Microbiome Influenced by Genetic Differences in Immune System

GEN | October 16, 2019

Scientists headed by a team at the University of Chicago have shown how genetic differences in the immune system can impact on the types of bacterial communities that colonize the gastrointestinal system. Their studies, in germ-free mice colonized with microbiomes from conventionally reared animals, found that while the makeup of the donor microbiome was the key factor in determining the recipient microbiome, genetic differences in the immune systems of the recipients also played a role. “When the input is standardized, you can compare mice of different genetic strains and see what these genetics do to the microbiome in recipient mice,” said Alexander Chervonsky, MD, PhD, who is a senior author of the team’s study, which is published in Cell Reports. “This approach allowed us to tell whether there was a genetic influence, and indeed there is.” Chervonsky and colleagues report their findings in a paper titled, “Polymorphic Immune Mechanisms Regulate Commensal Repertoire.” The bacteria that naturally live in and on us provide essential functions that are required for our very survival, the authors wrote. The composition of microbial communities varies between individuals and is influenced by a range of factors, including “… the mode of transmission during birth, breastfeeding, alimentary infections, and diet.” Previous studies have suggested that host genetics can also impact on microbial communities—identical twins tend to have more similar microbiomes than do non-identical twins—but, as the team continued, “ … two important questions remain unanswered: to what extent and which host’s polymorphic mechanisms are involved in shaping the repertoire of the commensals.”

Read More

Events