Top 10 gene therapy companies in 2019

Gene therapy is one of the most cutting-edge medical technologies in 2019. Instead of tried and tested treatments like drugs or surgery, gene therapy, also known as genetic modification or gene editing, inserts sections of DNA into a patient’s cells to correct damaged or abnormal genes. Tackling diseases on a genetic level could prove to be the long-awaited breakthrough for patients suffering with various rare and hereditary diseases. With untold potential, gene therapy could also lead the way to finding a universal cure for cancer, HIV and heart disease - some of the leading causes of death today.

Spotlight

Access Healthcare Services

Access Healthcare provides business process outsourcing and applications services, and robotic process automation tools to healthcare providers, payers, and related service providers. We operate from 19 delivery centers across 9 cities in the US, India and the Philippines, and our 11,000+ staff is committed to bringing revenue cycle excellence to our customers by leveraging technology, emerging best practices, and global delivery. Based in Dallas, we support over 300,000 physicians, serve 80+ specialties, process over $ 70 billion of A/R annually, and ascribe medical codes to over 30 million charts annually.

OTHER ARTICLES
MedTech

Laboratory Information Management System for Biotech Labs: Significance & Benefits

Article | July 16, 2022

If you have ever visited the testing laboratory of a large biotechnology company, you will be aware that managing the laboratory's operations single-handedly is no easy task. The greater the size of a lab, the more research and testing activities it must accommodate. A variety of diagnostic tests are prescribed for patients in order to detect various diseases. For example, it may include blood glucose testing for diabetics, lipid panel, or liver panel tests for evaluating cardiac risk and liver function, cultures for diagnosing infections, thyroid function tests, and others. Laboratory management solutions such as laboratory information management systems (LIMS) and other software play a significant role in managing various operational data at biotech laboratories. It is one of the important types of software developed to address thedata management and regulatory challenges of laboratories. The software enhances the operational efficiency of biotech labs by streamlining workflows, proper record-keeping, and eradicating the need for manually maintaining data. What Are the Benefits of Laboratory Information Management Software in Biotechnology? As the trends of digitization and technology continue to create deeper inroads into the biotechnology sector, a significant rise in the adoption of innovative medical software solutions, such as LIMS, is being witnessed for managing research data, testing reports, and post-research results globally. Here are a few reasons that are encouraging biotech facilities to adopt LIMS solutions Real-Time Data Collection and Tracking Previously, collecting and transporting samples was a tedious and time-consuming task. However, the adoption of LIMS with innovative tracking modules has made the job easier. The real-time sample tracking feature of LIMS has made it possible for personnel to collect the research data in real-time and manage and control the workflow with a few mouse clicks on the screen. Increase Revenue LIMS makes it possible to test workflows while giving users complete control over the testing process. A laboratory is able to collect data, schedule equipment maintenance or upgrades, enhance operational efficiency, and maintain a lower overhead with the help of the LIMS, thereby increasing revenue. Streamlined Workflow With its completion monitoring, LIMS speeds up laboratory workflows and keeps track of information. It assigns tasks to the specialist along with keeping a real-time track of the status and completion of each task. LIMS is integrated into the laboratory using lab information, which ultimately speeds up internal processes and streamlines the workflow. Automatic Data Exchange LIMS solutions store data in a centralized database. Automated transfer of data between departments and organizations is one of the major features of LIMS. Through its automated information exchange feature, LIMS improves internal operations, decreases the reporting time for data sharing, and assists in faster decision-making. Final Thoughts As the healthcare sector continues to ride the wave of digital transformation, biotech laboratories are emphasizing adopting newer technologies to keep up with the changes. Citing this trend, laboratory information management systems are becoming crucial for biotech and medical organizations for maintaining research data, instant reporting, and managing confidential, inventory, and financial data with centralized data storage.

Read More
MedTech

Biotech in 2022

Article | July 13, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More
MedTech

AI and Biotechnology: The Future of Healthcare Industry

Article | September 22, 2022

Artificial intelligence has grasped the foundation in biotech. It can have the most innovative impact on biotechnology. AI has already established its presence in our day-to-day life. AI has made the existence of self-driving cars possible. Likewise, the benefits and quality that it can contribute to biotech can also be felt. With AI, bio technicians will be able to enhance virtual screening, overlook preliminary datasets from clinics, and decipher an enormous amount of information. It can also help in improving the medication process by gathering and analyzing every bit of information. The Significance of AI in Biotechnology In the past few years, the application of artificial intelligence in the biotechnology industry has shifted from being sci-fi to sci-fact. A vast number of biotech companies like Deep Genomics are adopting AI for making data-driven decisions and use analytics tools to work efficiently. Unlike the AI robots in sci-fi that are ready to take over the world. AI designed for biotech has been designed to solve certain problems or complete a bunch of tasks by using automated algorithms. The aim of AI technology for biotech is to collect insights along with hidden patterns from large amounts of data. All the different industries of biotech including agriculture, animal, medical, industrial, and bioinformatics are gradually being affected by artificial intelligence. Moreover, the biotech industry is realizing that AI enables them some of the important strength to their business, including: Expanding accessibility Cost-effectiveness Critical predictions Efficient decision-making Research centers like PwC have also estimated output of $15.7 trillion by 2030 solely with AI contribution in industries. A survey revealed that about 44% of life science experts are using AI for R&D activities, as well. Use of AI in Biotechnology Altering Biomedical and Clinical Data So far the most developed use of AI is its ability to read voluminous data records and interpret them. It can prove to be a life-save for bio technicians who would have to examine that much data from research publications by themselves for the validation of their hypothesis. With the help of AI, clinical studies of patients will also become easier as all the examination reports and prescriptions will be stored in one place for cross-reference. Furthermore, it will also help in blending and fetching data into usable formats for analysis. Test Result Prediction Through trial and error, AI along with machine learning can help in predicting the response of the patient to certain drugs to provide more effective outcomes. Drug Design & Discovery AI plays a vital role whether it’s designing a new molecule or identifying new biological targets. It helps in identifying and validating drugs. It reduces the cost and time spent on the entire drug trial process and reaches the market. Personalized Medications for Rare Diseases With the combination of body scan results, patients’ body and analytics, AI can also help in detecting dangerous diseases at an early stage. Improving Process of Manufacturing To improve the process of manufacturing in biotechnology, AI offers a wide range of opportunities. It controls quality, reduces wastage, improves useability, and minimizes the designing time. Moving Towards AI-Enhanced Biotech Future Ever since the concept of artificial intelligence has arrived, being curious by nature, humans have started working towards achieving this goal. It has been growing at a fast pace while showing unbelievable growth and achievements at times. In comparison to the traditional methods used in the biotechnology industry, AI-based methods seem more reliable and accurate. In the upcoming years, it will show its success by improving the quality of health people have. You can also develop your AI-based application or know more about it by taking IT consultations.

Read More
Diagnostics

Making Predictions by Digitizing Bioprocessing

Article | April 20, 2021

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More

Spotlight

Access Healthcare Services

Access Healthcare provides business process outsourcing and applications services, and robotic process automation tools to healthcare providers, payers, and related service providers. We operate from 19 delivery centers across 9 cities in the US, India and the Philippines, and our 11,000+ staff is committed to bringing revenue cycle excellence to our customers by leveraging technology, emerging best practices, and global delivery. Based in Dallas, we support over 300,000 physicians, serve 80+ specialties, process over $ 70 billion of A/R annually, and ascribe medical codes to over 30 million charts annually.

Related News

Cell and Gene Therapy, Diagnostics

NorthX Biologics, a leading Nordic development and manufacturing organisation announces acquisition of a biologics manufacturing unit from Valneva

Globenewswire | July 04, 2023

NorthX Biologics (‘NorthX’), a leading Nordic development and manufacturing organisation with a focus on advanced biologics, CGT (cell and gene therapy) and vaccines, announced today the successful acquisition of the Stockholm-based Clinical Trial Manufacturing unit from Valneva Sweden, significantly expanding capabilities. The acquisition includes the transfer of a multi-purpose facility, situated in the Stockholm life science cluster, close to Karolinska University Hospital. In addition, 30 staff members who currently operate the facility will also join NorthX. The site and staff have a long history with extensive experience of serving both Valneva internally and also working with external customers on a contract development and manufacturing basis. With expertise in mammalian expression systems and viral vectors, the capabilities complement those of NorthX’s existing business of advanced microbial based manufacturing of proteins and plasmid DNA. The acquired unit excels in process development, scale up, GMP production, quality control analytics, and quality assurance/release and is capable of working with Biosafety Level (BSL) 2/2+ and BSL 3 organisms. With this expansion, NorthX enhances its capabilities and can offer comprehensive services to a wider range of clients globally. Janet Hoogstraate, currently Managing Director of Valneva Sweden, will join the NorthX team. She commented, “I am very proud when looking back at what we have achieved within the unit over the past years and look forward with great enthusiasm to build on NorthX’s position as the go-to manufacturer of advanced biologics in Northern Europe.” Helena Strigård, CEO of NorthX, said, “We are delighted to join forces with our new colleagues in Stockholm to bring new innovative treatments to tomorrow’s patients.” Thomas Eldered, Chairman of NorthX, commented, “This strategic move marks a significant milestone in our growth journey and strengthens NorthX as Sweden’s Innovation Hub. We are now able to work with ATMPs and advanced biologics, including process development and manufacture for clinical trials and commercial requirements.” ABOUT NORTHX BIOLOGICS NorthX Biologics develops and manufactures advanced biologics and has over 30 years of GMP production experience. The team provides process development and GMP manufacturing services with expertise in plasmid DNA, mRNA, proteins, cell therapy and other advanced biologics. Headquartered in the heart of Sweden, the team serves customers worldwide. In 2021 NorthX was recognised and appointed as the national innovation hub for GMP manufacture of advanced therapeutics and vaccines by the Swedish Government and Vinnova, Sweden's innovation agency. NorthX has the ambition to become a leading cell and gene therapy manufacturer and partner of choice for innovative drug development companies. For more information visit www.nxbio.com.

Read More

Cell and Gene Therapy, AI

BenevolentAI Progresses BEN-34712 for the Potential Treatment of ALS into IND-Enabling Studies

Businesswire | June 05, 2023

BenevolentAI, a leader in the development of cutting-edge AI that accelerates biopharma discovery, announces the successful delivery of its pre-clinical candidate for the potential treatment of amyotrophic lateral sclerosis (ALS), BEN-34712. BEN-34712 is an oral, potent and selective brain penetrant RARɑβ (retinoic acid receptor alpha beta) biased agonist and will now enter investigational new drug (IND)-enabling studies. Impaired retinoic acid signalling has been shown to result in neuroinflammation, oxidative stress and mitochondrial dysfunction, all hallmarks of ALS. In preclinical studies conducted by the Company, BEN-34712 was neuroprotective in a patient-derived, disease-relevant in vitro motor neuron/iAstrocyte co-culture model, demonstrating significant efficacy in both sporadic and familial subtypes of ALS. In addition, BEN-34712 has demonstrated both central nervous system (CNS) target engagement and functional protective effects in the SOD1G93A mouse model of ALS after 50-day repeat dosing. BenevolentAI collaborated with the Sheffield Institute for Translational Neuroscience (SITraN) at the University of Sheffield on this programme, utilising their patient-derived motor neuron/iAstrocyte co-culture systems and in vivo model expertise. Anne Phelan, Chief Scientific Officer, BenevolentAI, said: “There remains a significant and urgent need for new and alternative therapies for patients with ALS. We are pleased by the promising advancement of our drug candidate, BEN-34712, towards clinical development, backed by the compelling preclinical data generated by our collaborators at SITraN.” Richard Mead, Senior Lecturer in Translational Neuroscience at SITraN, commented: "ALS patients suffering from this devastating neurodegenerative disease are in dire need of effective therapy, with the current standard of care options focusing on symptom management or offering limited clinical benefit. We believe BEN-34712 represents an exciting development in our research for a potential new treatment, particularly as it shows effectiveness in both the SOD1G93A mouse model system as well as familial and C9orf72 related ALS patient-derived cell models." About BenevolentAI BenevolentAI is a leading developer of advanced artificial intelligence technologies that unlock the value of multimodal data, surface novel insights, and accelerate biomedical discovery. Through the combined capabilities of its AI platform, its scientific expertise, and wet-lab facilities, the Company is developing an in-house drug pipeline of high-value assets. The Company is headquartered in London, with a research facility in Cambridge (UK) and a further office in New York. About ALS ALS is a progressive neurologic disorder characterised by the loss of cortical and spinal motor neurons, leading to the denervation of nerve endplates, axonal retraction and subsequent muscle atrophy. The average survival time following the initial diagnosis is around two-three years, and while there are drugs approved by the US FDA for ALS, they provide only modest benefits to patients, underwriting the urgent need for new and alternative therapies. About SITraN at the University of Sheffield The Sheffield Institute for Translational Neuroscience (SITraN) is an essential development in the fight against motor neurone disease and other common neurodegenerative disorders, including Parkinson's and dementia, as well as stroke and multiple sclerosis. SITraN has the potential to bring new treatments and new hope to patients and carers in the UK and worldwide, by significantly accelerating the pace of therapeutic development using technologies such as experimental modelling of disease, gene therapy and stem cell biology, gene expression profiling and bioinformatics analysis and modelling of the biological processes. Since its opening by Queen Elizabeth II in 2010, SITraN has grown immensely and developed into a leading global facility which is at the forefront of research and expertise.

Read More

Cell and Gene Therapy

Mission Bio Develops Single-Cell Solution to Address Challenges in Genome Editing

PR Newswire | May 12, 2023

Mission Bio, the single-cell DNA and multi-omics company, announced today the Tapestri® Genome Editing Solution, an end-to-end product for genome editing analysis. The product will be previewed next week at the American Society of Gene and Cell Therapy Conference (ASGCT) 26th Annual Meeting. By enabling robust single-cell insights impacting both efficacy and safety, the solution will be a powerful analytical tool for developing the next generation of gene-edited therapies. The first CRISPR-modified therapy is now under regulatory review, and many similar cell-based therapies are expected to follow for multiple intractable diseases. However, genome editing can result in complex, heterogeneous mixtures of edits that make it challenging to apply a level of process control over genome-edited cell products. The Tapestri® Genome Editing Solution addresses these challenges by measuring gene editing outcomes at single-cell resolution, capturing the co-occurrence of on- and off-target edits, as well as the zygosity of edits, which conventional bulk analyses cannot. Additionally, this analysis can be completed within days by processing thousands of cells at a time without any prior selection, while conventional analytical methods require months for clonal outgrowth. An early iteration of the Tapestri® Genome Editing Solution is currently being tested by key genome editing researchers and leading cell therapy developers in academia and industry, who are providing vital feedback on the analysis. Mission Bio recently collaborated with the National Institute of Standards and Technology (NIST) in the Genome Editing Consortium, which provided qualified samples to collaborators to assess technologies that report variant size and frequency within a mixed cell population. Samantha Maragh, NIST Genome Editing Program Leader, will present results of the study at 12:00 p.m. PT on May 17 (Poster 533) at the ASGCT Annual Meeting. "We look forward to pulling back the curtain on our end-to-end Genome Editing Solution at ASGCT," said Todd Druley, MD, PhD, Chief Medical Officer at Mission Bio. "The data acquired under the Genome Editing Consortium further demonstrates the Tapestri® Platform's potential as a standard analysis tool within the genome editing community. Given the heterogeneous results of gene editing strategies, there is a great need to address both industry and regulatory genome editing concerns with a consistent and highly precise technology for accurately measuring gene editing outcomes, and our new offering will be a complete solution to do just that." About Mission Bio Mission Bio is a life sciences company that accelerates discoveries and cures for a wide range of diseases by equipping researchers with the tools they need to better measure and predict our resistance and response to new therapies. Mission Bio's multi-omics approach improves time-to-market for new therapeutics, including innovative cell and gene therapies that provide new pathways to health. Founded in 2014, Mission Bio has secured investment from Novo Growth, Cota Capital, Agilent Technologies, Mayfield Fund, and others. The company's Tapestri® Platform gives researchers around the globe the power to interrogate every molecule in a cell together, providing a comprehensive understanding of activity from a single sample. Tapestri® is the only commercialized multi-omics platform capable of analyzing DNA and protein simultaneously from the same sample at single-cell resolution. The Tapestri® Platform is being utilized by customers at leading research centers, pharmaceutical, and diagnostics companies worldwide to develop treatments and eventually cures for cancer.

Read More

Cell and Gene Therapy, Diagnostics

NorthX Biologics, a leading Nordic development and manufacturing organisation announces acquisition of a biologics manufacturing unit from Valneva

Globenewswire | July 04, 2023

NorthX Biologics (‘NorthX’), a leading Nordic development and manufacturing organisation with a focus on advanced biologics, CGT (cell and gene therapy) and vaccines, announced today the successful acquisition of the Stockholm-based Clinical Trial Manufacturing unit from Valneva Sweden, significantly expanding capabilities. The acquisition includes the transfer of a multi-purpose facility, situated in the Stockholm life science cluster, close to Karolinska University Hospital. In addition, 30 staff members who currently operate the facility will also join NorthX. The site and staff have a long history with extensive experience of serving both Valneva internally and also working with external customers on a contract development and manufacturing basis. With expertise in mammalian expression systems and viral vectors, the capabilities complement those of NorthX’s existing business of advanced microbial based manufacturing of proteins and plasmid DNA. The acquired unit excels in process development, scale up, GMP production, quality control analytics, and quality assurance/release and is capable of working with Biosafety Level (BSL) 2/2+ and BSL 3 organisms. With this expansion, NorthX enhances its capabilities and can offer comprehensive services to a wider range of clients globally. Janet Hoogstraate, currently Managing Director of Valneva Sweden, will join the NorthX team. She commented, “I am very proud when looking back at what we have achieved within the unit over the past years and look forward with great enthusiasm to build on NorthX’s position as the go-to manufacturer of advanced biologics in Northern Europe.” Helena Strigård, CEO of NorthX, said, “We are delighted to join forces with our new colleagues in Stockholm to bring new innovative treatments to tomorrow’s patients.” Thomas Eldered, Chairman of NorthX, commented, “This strategic move marks a significant milestone in our growth journey and strengthens NorthX as Sweden’s Innovation Hub. We are now able to work with ATMPs and advanced biologics, including process development and manufacture for clinical trials and commercial requirements.” ABOUT NORTHX BIOLOGICS NorthX Biologics develops and manufactures advanced biologics and has over 30 years of GMP production experience. The team provides process development and GMP manufacturing services with expertise in plasmid DNA, mRNA, proteins, cell therapy and other advanced biologics. Headquartered in the heart of Sweden, the team serves customers worldwide. In 2021 NorthX was recognised and appointed as the national innovation hub for GMP manufacture of advanced therapeutics and vaccines by the Swedish Government and Vinnova, Sweden's innovation agency. NorthX has the ambition to become a leading cell and gene therapy manufacturer and partner of choice for innovative drug development companies. For more information visit www.nxbio.com.

Read More

Cell and Gene Therapy, AI

BenevolentAI Progresses BEN-34712 for the Potential Treatment of ALS into IND-Enabling Studies

Businesswire | June 05, 2023

BenevolentAI, a leader in the development of cutting-edge AI that accelerates biopharma discovery, announces the successful delivery of its pre-clinical candidate for the potential treatment of amyotrophic lateral sclerosis (ALS), BEN-34712. BEN-34712 is an oral, potent and selective brain penetrant RARɑβ (retinoic acid receptor alpha beta) biased agonist and will now enter investigational new drug (IND)-enabling studies. Impaired retinoic acid signalling has been shown to result in neuroinflammation, oxidative stress and mitochondrial dysfunction, all hallmarks of ALS. In preclinical studies conducted by the Company, BEN-34712 was neuroprotective in a patient-derived, disease-relevant in vitro motor neuron/iAstrocyte co-culture model, demonstrating significant efficacy in both sporadic and familial subtypes of ALS. In addition, BEN-34712 has demonstrated both central nervous system (CNS) target engagement and functional protective effects in the SOD1G93A mouse model of ALS after 50-day repeat dosing. BenevolentAI collaborated with the Sheffield Institute for Translational Neuroscience (SITraN) at the University of Sheffield on this programme, utilising their patient-derived motor neuron/iAstrocyte co-culture systems and in vivo model expertise. Anne Phelan, Chief Scientific Officer, BenevolentAI, said: “There remains a significant and urgent need for new and alternative therapies for patients with ALS. We are pleased by the promising advancement of our drug candidate, BEN-34712, towards clinical development, backed by the compelling preclinical data generated by our collaborators at SITraN.” Richard Mead, Senior Lecturer in Translational Neuroscience at SITraN, commented: "ALS patients suffering from this devastating neurodegenerative disease are in dire need of effective therapy, with the current standard of care options focusing on symptom management or offering limited clinical benefit. We believe BEN-34712 represents an exciting development in our research for a potential new treatment, particularly as it shows effectiveness in both the SOD1G93A mouse model system as well as familial and C9orf72 related ALS patient-derived cell models." About BenevolentAI BenevolentAI is a leading developer of advanced artificial intelligence technologies that unlock the value of multimodal data, surface novel insights, and accelerate biomedical discovery. Through the combined capabilities of its AI platform, its scientific expertise, and wet-lab facilities, the Company is developing an in-house drug pipeline of high-value assets. The Company is headquartered in London, with a research facility in Cambridge (UK) and a further office in New York. About ALS ALS is a progressive neurologic disorder characterised by the loss of cortical and spinal motor neurons, leading to the denervation of nerve endplates, axonal retraction and subsequent muscle atrophy. The average survival time following the initial diagnosis is around two-three years, and while there are drugs approved by the US FDA for ALS, they provide only modest benefits to patients, underwriting the urgent need for new and alternative therapies. About SITraN at the University of Sheffield The Sheffield Institute for Translational Neuroscience (SITraN) is an essential development in the fight against motor neurone disease and other common neurodegenerative disorders, including Parkinson's and dementia, as well as stroke and multiple sclerosis. SITraN has the potential to bring new treatments and new hope to patients and carers in the UK and worldwide, by significantly accelerating the pace of therapeutic development using technologies such as experimental modelling of disease, gene therapy and stem cell biology, gene expression profiling and bioinformatics analysis and modelling of the biological processes. Since its opening by Queen Elizabeth II in 2010, SITraN has grown immensely and developed into a leading global facility which is at the forefront of research and expertise.

Read More

Cell and Gene Therapy

Mission Bio Develops Single-Cell Solution to Address Challenges in Genome Editing

PR Newswire | May 12, 2023

Mission Bio, the single-cell DNA and multi-omics company, announced today the Tapestri® Genome Editing Solution, an end-to-end product for genome editing analysis. The product will be previewed next week at the American Society of Gene and Cell Therapy Conference (ASGCT) 26th Annual Meeting. By enabling robust single-cell insights impacting both efficacy and safety, the solution will be a powerful analytical tool for developing the next generation of gene-edited therapies. The first CRISPR-modified therapy is now under regulatory review, and many similar cell-based therapies are expected to follow for multiple intractable diseases. However, genome editing can result in complex, heterogeneous mixtures of edits that make it challenging to apply a level of process control over genome-edited cell products. The Tapestri® Genome Editing Solution addresses these challenges by measuring gene editing outcomes at single-cell resolution, capturing the co-occurrence of on- and off-target edits, as well as the zygosity of edits, which conventional bulk analyses cannot. Additionally, this analysis can be completed within days by processing thousands of cells at a time without any prior selection, while conventional analytical methods require months for clonal outgrowth. An early iteration of the Tapestri® Genome Editing Solution is currently being tested by key genome editing researchers and leading cell therapy developers in academia and industry, who are providing vital feedback on the analysis. Mission Bio recently collaborated with the National Institute of Standards and Technology (NIST) in the Genome Editing Consortium, which provided qualified samples to collaborators to assess technologies that report variant size and frequency within a mixed cell population. Samantha Maragh, NIST Genome Editing Program Leader, will present results of the study at 12:00 p.m. PT on May 17 (Poster 533) at the ASGCT Annual Meeting. "We look forward to pulling back the curtain on our end-to-end Genome Editing Solution at ASGCT," said Todd Druley, MD, PhD, Chief Medical Officer at Mission Bio. "The data acquired under the Genome Editing Consortium further demonstrates the Tapestri® Platform's potential as a standard analysis tool within the genome editing community. Given the heterogeneous results of gene editing strategies, there is a great need to address both industry and regulatory genome editing concerns with a consistent and highly precise technology for accurately measuring gene editing outcomes, and our new offering will be a complete solution to do just that." About Mission Bio Mission Bio is a life sciences company that accelerates discoveries and cures for a wide range of diseases by equipping researchers with the tools they need to better measure and predict our resistance and response to new therapies. Mission Bio's multi-omics approach improves time-to-market for new therapeutics, including innovative cell and gene therapies that provide new pathways to health. Founded in 2014, Mission Bio has secured investment from Novo Growth, Cota Capital, Agilent Technologies, Mayfield Fund, and others. The company's Tapestri® Platform gives researchers around the globe the power to interrogate every molecule in a cell together, providing a comprehensive understanding of activity from a single sample. Tapestri® is the only commercialized multi-omics platform capable of analyzing DNA and protein simultaneously from the same sample at single-cell resolution. The Tapestri® Platform is being utilized by customers at leading research centers, pharmaceutical, and diagnostics companies worldwide to develop treatments and eventually cures for cancer.

Read More

Events