SynbiTECH unplugged: an interview with Professors Kitney and Freemont

Professor Richard Kitney is co-Director of the UK National Industrial Translation Centre for Synthetic Biology (SynbiCITE) and co-Founder and co-Director of the EPSRC National Centre for Synthetic Biology and Innovation (CSynBI). He is Professor of BioMedical Systems Engineering at Imperial College London. As Chair of The Royal Academy of Engineering’s Inquiry into Synthetic Biology and a member of the UK’s Ministerial Synthetic Biology Leadership Council, he has driven the UK’s approach to the field and the technology, its development and its translation into industrially useful products, tools, processes and services.

Spotlight

Applied Medical

As a new generation medical device company, Applied Medical is focused on meeting three fundamental healthcare needs: enhanced clinical outcomes, cost containment and unrestricted choice. Our vertically integrated programs in design, development, manufacturing, and distribution enable us to consistently meet these objectives. Our state-of-the-art manufacturing plants are located in Southern California with distribution centers in Atlanta, New York, Europe, and Australia.

OTHER ARTICLES
Medical

Laboratory Information Management System for Biotech Labs: Significance & Benefits

Article | August 16, 2022

If you have ever visited the testing laboratory of a large biotechnology company, you will be aware that managing the laboratory's operations single-handedly is no easy task. The greater the size of a lab, the more research and testing activities it must accommodate. A variety of diagnostic tests are prescribed for patients in order to detect various diseases. For example, it may include blood glucose testing for diabetics, lipid panel, or liver panel tests for evaluating cardiac risk and liver function, cultures for diagnosing infections, thyroid function tests, and others. Laboratory management solutions such as laboratory information management systems (LIMS) and other software play a significant role in managing various operational data at biotech laboratories. It is one of the important types of software developed to address thedata management and regulatory challenges of laboratories. The software enhances the operational efficiency of biotech labs by streamlining workflows, proper record-keeping, and eradicating the need for manually maintaining data. What Are the Benefits of Laboratory Information Management Software in Biotechnology? As the trends of digitization and technology continue to create deeper inroads into the biotechnology sector, a significant rise in the adoption of innovative medical software solutions, such as LIMS, is being witnessed for managing research data, testing reports, and post-research results globally. Here are a few reasons that are encouraging biotech facilities to adopt LIMS solutions Real-Time Data Collection and Tracking Previously, collecting and transporting samples was a tedious and time-consuming task. However, the adoption of LIMS with innovative tracking modules has made the job easier. The real-time sample tracking feature of LIMS has made it possible for personnel to collect the research data in real-time and manage and control the workflow with a few mouse clicks on the screen. Increase Revenue LIMS makes it possible to test workflows while giving users complete control over the testing process. A laboratory is able to collect data, schedule equipment maintenance or upgrades, enhance operational efficiency, and maintain a lower overhead with the help of the LIMS, thereby increasing revenue. Streamlined Workflow With its completion monitoring, LIMS speeds up laboratory workflows and keeps track of information. It assigns tasks to the specialist along with keeping a real-time track of the status and completion of each task. LIMS is integrated into the laboratory using lab information, which ultimately speeds up internal processes and streamlines the workflow. Automatic Data Exchange LIMS solutions store data in a centralized database. Automated transfer of data between departments and organizations is one of the major features of LIMS. Through its automated information exchange feature, LIMS improves internal operations, decreases the reporting time for data sharing, and assists in faster decision-making. Final Thoughts As the healthcare sector continues to ride the wave of digital transformation, biotech laboratories are emphasizing adopting newer technologies to keep up with the changes. Citing this trend, laboratory information management systems are becoming crucial for biotech and medical organizations for maintaining research data, instant reporting, and managing confidential, inventory, and financial data with centralized data storage.

Read More
MedTech

2 Small-Cap Biotech Stocks You Haven't Heard of, But Should Know About

Article | September 22, 2022

With everything that's going on with the COVID-19 pandemic, many healthcare companies have grabbed plenty of spotlight during these challenging times. At the same time, a number of otherwise promising businesses have slipped under the radar. That's especially true for small-cap biotech stocks that aren't actively involved in developing tests, vaccines or treatments for COVID-19. Vaccine developers, protective equipment producers, and healthcare service providers are all attracting plenty of attention during this pandemic, but there are just as many promising biotech stocks that aren't involved in these areas. Here are two such companies that you might have missed, but they deserve a spot on your watch list.

Read More
MedTech

Immunology: A New Frontier in Medical Science

Article | July 16, 2022

Introduction Recent developments in the bioengineering of monoclonal antibodies (mAbs) have revolutionized the treatment of numerous rheumatic and immunological disorders. Currently, several immunological disorders are successfully being targeted and treated using innovative medical techniques such as immunotherapy. Leading companies are increasingly investing in research activities to expand the usage and application of immunology for the treatment of various infectious diseases, including multiple sclerosis, inflammatory bowel disorders, lupus, and psoriasis, leading companies are increasingly investing in research activities. Today, the efforts of researchers in immunology, with a long history of study and research, have borne fruit, as bioengineered mAbs are now being employed in clinical practices. Accelerating Investments: Paving the Way for Immunology The increasing prevalence of infectious diseases, cancer, and immune-mediated inflammatory disorders (IMIDs) is raising the need for more precise classification and an in-depth understanding of the pathology underlying these ailments. Numerous leaders in the biotechnology domain are thus focusing on undertaking numerous strategies, such as new facility launches and collaborations, to address the need by finding deeper inroads into immunology and its use in disease treatments. For instance, in 2022, the University of Texas MD Anderson Cancer Center announced the launch of a visionary research and innovation hub, the James P. Allison Institute, to find new roads in immunotherapy, develop new treatments, and foster groundbreaking science. These developments will result in better diagnosis through the use of selective biomarkers, and early detection of fatal diseases and their treatment, which will prevent complications from happening. Also, the identification of high-risk populations through a deeper understanding of genetic and environmental factors can assist in the prevention of disease through immunotherapy. The Way Forward Immunology has led to the development of biotechnology, making it possible to develop novel drugs and vaccines, as well as diagnostic tests, that can be used to prevent, diagnose, and treat a wide range of autoimmune, infectious, and cancerous diseases. With the rapid advancement in technology and the integration of artificial intelligence, immunology is finding its way into an array of domains and industries, encompassing several research areas including medicine, pharmaceuticals, agriculture, and space. Today, not only researchers but also leading biotech and pharmaceutical companies have recognized that conventional therapies with pharmaceutical and chemical products are being replaced by products derived from immunology. This is because they work well for health problems, are environmentally friendly, and are also emerging as a wealth-generating business in the medical field.

Read More
Medical

Better Purification and Recovery in Bioprocessing

Article | August 2, 2021

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More

Spotlight

Applied Medical

As a new generation medical device company, Applied Medical is focused on meeting three fundamental healthcare needs: enhanced clinical outcomes, cost containment and unrestricted choice. Our vertically integrated programs in design, development, manufacturing, and distribution enable us to consistently meet these objectives. Our state-of-the-art manufacturing plants are located in Southern California with distribution centers in Atlanta, New York, Europe, and Australia.

Related News

AI

eureKARE and DNAlytics Form Partnership to Develop a Proprietary AI Platform

eureKARE | July 07, 2021

eureKARE, a pioneering new company focused on financing and building next-generation biotechnology companies in the disruptive fields of the microbiome and synthetic biology, today announced an agreement with DNAlytics, a Belgian company applying data sciences to healthcare, to develop eureKARE's proprietary Artificial Intelligence (AI) platform to support its Biotech start-upstart-up studios, eureKARE. Unlike conventional start-upstart-up incubation methods, which begin with new science and then attempt to find an issue to address with it, eureKARE's methodology reverses this. eureKARE is committed to first finding an unmet need and then enlisting the best scientists and experts to provide an innovative solution to launch exciting new ventures. This process will be aided by eureKARE's one-of-a-kind AI platform, which will assist the business in identifying top academic researchers, locating new ideas and approaches in development, and scaling existing portfolio companies. About eureKARE eureKARE is a ground-breaking new company focusing on financing and establishing next-generation biotechnology start-ups in the microbiome and synthetic biology cutting-edge areas. eureKARE employs a two-step investing strategy to create long-term value. Through its biotech start-upstart-up studios eureKABIOME (Microbiome) and eureKASYNBIO, the company promotes translational research by developing and financing new companies based on high-value European science (Synthetic biology). In addition, the company aims to engage in more mature biotech companies. It will systematically propose to provide some liquidity to early investors, thus fulfilling a crucial demand in the European biotech sector. EureKARE has a fast-expanding portfolio of companies with the potential to disrupt the life sciences sector, led by its prominent founder, Alexandre Mouradian, and a pan-European team. About DNAlytics DNAlytics is based in Louvain-la-Neuve, Belgium, specializing in data science for the healthcare sector, including data management, bioinformatics, biostatistics, Machine Learning, and other Artificial Intelligence methods. DNAlytics products are utilized in clinical research, the creation of biotech drugs and medical devices, public health studies, and the monitoring and optimization of bio-manufacturing processes. In addition, DNAlytics assists a wide range of clients and partners in extracting scientifically sound observations and practical conclusions from complex data sets.

Read More

Tennessee researchers join call for responsible development of synthetic biology

Phys.org | October 18, 2019

Engineering biology is already transforming technology and science, and a consortium of researchers across many disciplines in the international Genome Project-write is calling for more discussion among scientists, policy makers and the general public to shepherd future development. In a policy forum article published in the October 18 issue of Science, the authors outline the technological advances needed to secure the transformative future of synthetic biology and express their concerns that the implementation of the relatively new discipline remains safe and responsible. Two researchers with the University of Tennessee Institute of Agriculture are co-authors on the piece titled "Technological challenges and milestones for writing genomes: synthetic genomics requires improved technologies." Neal Stewart and Scott Lenaghan with the UTIA departments of Plant Sciences and Food Science, respectively, join Nili Ostrov, a Ph.D. research fellow in genetics at Harvard Medical School, and 18 other leading scientists from a number of institutions and disciplines, in outlining a potential timeline for the development of what they call transformative advances to science and society.

Read More

Bioactive Agents Improve Synthetic Bone Substitutes

Technology Networks | October 18, 2019

Synthetic bone substitutes are promising materials for bone defect repair, but their efficacy can be substantially improved by bioactive agents such as growth factors. In a new study, researchers have modified beta-tricalcium phosphate (β-TCP) with increasing quantities of bone morphogenetic protein 2 (BMP-2) derived from E. coli and shown improved bone healing. The study is published in Tissue Engineering, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Yuelian Liu, PhD, Academic Center for Dentistry Amsterdam, Amsterdam, Netherlands, and colleagues present their work in an article titled "Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects". The authors created bone defects in a rat calvarial model and then attempted repair using β-TCP granules coated with a biomimetic calcium phosphate preparation that allows slow release of BMP-2. Bone growth and maturation were studied in comparison with autologous bone grafts using micro-CT scans, histology, and histomorphometry, and toxicity was assessed with blood tests. The E. coli-derived BMP-2 successfully improved bone formation with efficacy comparable to autologous grafts, and higher BMP-2 concentration promoted bone maturation.

Read More

AI

eureKARE and DNAlytics Form Partnership to Develop a Proprietary AI Platform

eureKARE | July 07, 2021

eureKARE, a pioneering new company focused on financing and building next-generation biotechnology companies in the disruptive fields of the microbiome and synthetic biology, today announced an agreement with DNAlytics, a Belgian company applying data sciences to healthcare, to develop eureKARE's proprietary Artificial Intelligence (AI) platform to support its Biotech start-upstart-up studios, eureKARE. Unlike conventional start-upstart-up incubation methods, which begin with new science and then attempt to find an issue to address with it, eureKARE's methodology reverses this. eureKARE is committed to first finding an unmet need and then enlisting the best scientists and experts to provide an innovative solution to launch exciting new ventures. This process will be aided by eureKARE's one-of-a-kind AI platform, which will assist the business in identifying top academic researchers, locating new ideas and approaches in development, and scaling existing portfolio companies. About eureKARE eureKARE is a ground-breaking new company focusing on financing and establishing next-generation biotechnology start-ups in the microbiome and synthetic biology cutting-edge areas. eureKARE employs a two-step investing strategy to create long-term value. Through its biotech start-upstart-up studios eureKABIOME (Microbiome) and eureKASYNBIO, the company promotes translational research by developing and financing new companies based on high-value European science (Synthetic biology). In addition, the company aims to engage in more mature biotech companies. It will systematically propose to provide some liquidity to early investors, thus fulfilling a crucial demand in the European biotech sector. EureKARE has a fast-expanding portfolio of companies with the potential to disrupt the life sciences sector, led by its prominent founder, Alexandre Mouradian, and a pan-European team. About DNAlytics DNAlytics is based in Louvain-la-Neuve, Belgium, specializing in data science for the healthcare sector, including data management, bioinformatics, biostatistics, Machine Learning, and other Artificial Intelligence methods. DNAlytics products are utilized in clinical research, the creation of biotech drugs and medical devices, public health studies, and the monitoring and optimization of bio-manufacturing processes. In addition, DNAlytics assists a wide range of clients and partners in extracting scientifically sound observations and practical conclusions from complex data sets.

Read More

Tennessee researchers join call for responsible development of synthetic biology

Phys.org | October 18, 2019

Engineering biology is already transforming technology and science, and a consortium of researchers across many disciplines in the international Genome Project-write is calling for more discussion among scientists, policy makers and the general public to shepherd future development. In a policy forum article published in the October 18 issue of Science, the authors outline the technological advances needed to secure the transformative future of synthetic biology and express their concerns that the implementation of the relatively new discipline remains safe and responsible. Two researchers with the University of Tennessee Institute of Agriculture are co-authors on the piece titled "Technological challenges and milestones for writing genomes: synthetic genomics requires improved technologies." Neal Stewart and Scott Lenaghan with the UTIA departments of Plant Sciences and Food Science, respectively, join Nili Ostrov, a Ph.D. research fellow in genetics at Harvard Medical School, and 18 other leading scientists from a number of institutions and disciplines, in outlining a potential timeline for the development of what they call transformative advances to science and society.

Read More

Bioactive Agents Improve Synthetic Bone Substitutes

Technology Networks | October 18, 2019

Synthetic bone substitutes are promising materials for bone defect repair, but their efficacy can be substantially improved by bioactive agents such as growth factors. In a new study, researchers have modified beta-tricalcium phosphate (β-TCP) with increasing quantities of bone morphogenetic protein 2 (BMP-2) derived from E. coli and shown improved bone healing. The study is published in Tissue Engineering, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Yuelian Liu, PhD, Academic Center for Dentistry Amsterdam, Amsterdam, Netherlands, and colleagues present their work in an article titled "Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects". The authors created bone defects in a rat calvarial model and then attempted repair using β-TCP granules coated with a biomimetic calcium phosphate preparation that allows slow release of BMP-2. Bone growth and maturation were studied in comparison with autologous bone grafts using micro-CT scans, histology, and histomorphometry, and toxicity was assessed with blood tests. The E. coli-derived BMP-2 successfully improved bone formation with efficacy comparable to autologous grafts, and higher BMP-2 concentration promoted bone maturation.

Read More

Events