Single-cell DNA Analysis: Driving Dynamic Changes in the Treatment of Cancer

Complex diseases, such as cancer evolve, so understanding genetic variability at the single-cell level is vital. Ensuring researchers have the tools to unlock single-cell biology enables the discovery, development, and delivery of precision medicine.

Spotlight

SomaLogic

Our mission is to leverage our proprietary technology to discover, develop and commercialize revolutionary new life science research tools

OTHER ARTICLES
Medical

Next-Gen Gene Therapy to Counter Complex Diseases

Article | August 16, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
MedTech

Immunology: A New Frontier in Medical Science

Article | September 22, 2022

Introduction Recent developments in the bioengineering of monoclonal antibodies (mAbs) have revolutionized the treatment of numerous rheumatic and immunological disorders. Currently, several immunological disorders are successfully being targeted and treated using innovative medical techniques such as immunotherapy. Leading companies are increasingly investing in research activities to expand the usage and application of immunology for the treatment of various infectious diseases, including multiple sclerosis, inflammatory bowel disorders, lupus, and psoriasis, leading companies are increasingly investing in research activities. Today, the efforts of researchers in immunology, with a long history of study and research, have borne fruit, as bioengineered mAbs are now being employed in clinical practices. Accelerating Investments: Paving the Way for Immunology The increasing prevalence of infectious diseases, cancer, and immune-mediated inflammatory disorders (IMIDs) is raising the need for more precise classification and an in-depth understanding of the pathology underlying these ailments. Numerous leaders in the biotechnology domain are thus focusing on undertaking numerous strategies, such as new facility launches and collaborations, to address the need by finding deeper inroads into immunology and its use in disease treatments. For instance, in 2022, the University of Texas MD Anderson Cancer Center announced the launch of a visionary research and innovation hub, the James P. Allison Institute, to find new roads in immunotherapy, develop new treatments, and foster groundbreaking science. These developments will result in better diagnosis through the use of selective biomarkers, and early detection of fatal diseases and their treatment, which will prevent complications from happening. Also, the identification of high-risk populations through a deeper understanding of genetic and environmental factors can assist in the prevention of disease through immunotherapy. The Way Forward Immunology has led to the development of biotechnology, making it possible to develop novel drugs and vaccines, as well as diagnostic tests, that can be used to prevent, diagnose, and treat a wide range of autoimmune, infectious, and cancerous diseases. With the rapid advancement in technology and the integration of artificial intelligence, immunology is finding its way into an array of domains and industries, encompassing several research areas including medicine, pharmaceuticals, agriculture, and space. Today, not only researchers but also leading biotech and pharmaceutical companies have recognized that conventional therapies with pharmaceutical and chemical products are being replaced by products derived from immunology. This is because they work well for health problems, are environmentally friendly, and are also emerging as a wealth-generating business in the medical field.

Read More
MedTech

How to Choose a Reliable Biotech Clinical Trial Management System?

Article | July 12, 2022

Introduction The medical and life-science industries are experiencing a robust transformation with the increasing prevalence of various types of diseases, including infectious diseases, chronic disorders, and acute conditions around the world. As a result, a significant rise in demand for more effective therapeutic drugs and bionics is being witnessed, leading to a swift increase in the number of clinical trials. For a successful trial, it is important for biotech companies to ensure the data submitted to regulatory bodies regarding clinical trials is accurate, reliable, and definitive from an ethical point of view. A reliable clinical trial management system plays a vital role in collecting, monitoring, and managing clinical data. The availability of high-quality clinical data also helps clinical research institutions make efficient treatment decisions and provide proper patient care. Hence, a number of biotech companies and research organizations are focusing on leveraging innovative clinical trial management solutions to handle a large amount of data, particularly in multi-center trials, and generate reliable, high-quality, and statistically sound data from clinical trials. However, selecting the most appropriate and reliable clinical trial management system is vital for the clinical trial's success. Let's see some of the steps that will assist these firms in choosing the right CTMS. Key Steps for Selecting Right Biotech Clinical Trial Management System Prioritize Study Needs Considering and prioritizing study needs is a crucial step in choosing the most reliable clinical trial management system for biotech companies. Prioritizing helps them to identify a solution that improves the study's quality and removes uncertainty for researchers when faced with difficult choices. Hence, biotech and life-science organizations should choose a clinical trial system that is simple to use, well-organized, and suitably designed to minimize the number of clicks required to complete a task. Select CTMS with Multiple Integrations Integrated clinical trial management systems provide the best value for the companies’ funds as they guarantee the smooth functioning of research protocols. In addition, integrations are necessary to fully understand the importance and advantages of clinical trial management software for ensuring smooth transitions between site management and data collection. Biotech and clinical research should look for CTMS platforms that can integrate with electronic medical record (EMR) platforms and clinical research process content (CRPC) billing grids. This will allow them to use the same billing designations and ensure compliance while minimizing the need for duplicate processes. Ensure System Compliance and Security Clinical research organizations need to adhere to a plethora of complex regulations in order to ensure compliance with one of the most challenging environments of principles, which is information security and privacy. Security and system compliance are vital aspects of choosing the right CTMS solutions for biotech firms as they assist in building trust and form a part of the system’s duties. While selecting CTMS systems, it is essential for companies engaged in clinical research to ensure that these platforms are able to configure both, group and individual permissions, along with having a data backup and recovery plan for hosted systems. This will allow companies to assess the privacy and security implications of research and anticipate complications that may arise in each phase of the project. Assess the Scalability Choosing a scalable CTMS that can accommodate various types of fluctuations and expansions enables biotech and clinical firms to quickly adapt to fast-changing trends and demand spikes while reducing maintenance costs and enhancing user agility. As scalability also means secure and expanded data storage, these businesses should instead use SaaS solutions than manually manage an ever-growing collection of hard drives. The right CTMS ensures accommodating the firm’s availability requirements without incurring the capital costs associated with expanding a physical infrastructure. The Closing Thought A well-executed and successful clinical trial involves multiple stages and processes. Several quality controls and stringent adherence to regulations are essential for the steps, along with efficient cross-departmental processes and procedures. Incorporating the right CTMS paves the way for paperless data collection, regulatory filing, and fiscal management tools for biotech researchers and administrative personnel.

Read More
Research

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | July 11, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More

Spotlight

SomaLogic

Our mission is to leverage our proprietary technology to discover, develop and commercialize revolutionary new life science research tools

Related News

Cell and Gene Therapy

IsoPlexis Acquired a Large Portfolio of DNA and RNA Sequencing to Enable Integrated Single-Cell Sequencing and Proteomic Solutions

IsoPlexis | May 26, 2021

IsoPlexis, the leader in functional single-cell proteomics, announced today the acquisition of a large intellectual property portfolio containing 86 patents related to DNA and RNA sequencing. These nucleic acids and sequencing technologies will be immediately integrated with IsoPlexis' single-cell proteomics platforms, enabling a variety of next-generation tests that include numerous 'omic modalities from every single cell. This is the next step in the company's roadmap, enabling researchers to make far earlier connections in their genomic studies, straight to the proteome, which determines each organism's in vivo dynamic biology. The acquired assets will allow IsoPlexis' proprietary proteomics technologies to be integrated with newer proprietary sequencing-based technologies. The asset acquisition adds to IsoPlexis' ongoing efforts to assist its customers in more effectively simplifying complex biology to accelerate the creation of more personalized and curative advanced medicines from bench to bedside. Isoplexis' growing patent portfolio of 153 total patents filed and issued globally will now include sequencing methodologies, allowing for a new level of resolution into the connections between the genome and the proteome of cancer immunology, cell and gene therapy, neurological disease, and other areas. IsoPlexis' proprietary functional proteomics platform is the first to fully characterize and link cellular function to patient outcomes, treatment response, or disease progression using both proteomics and single-cell biology. The single-cell proteomics platform from IsoPlexis, which comprises instruments, chip consumables, and software, offers an end-to-end solution for providing a more complete view of protein function at the cellular level. The platform has been quickly embraced by the top 15 global biopharmaceutical companies in terms of revenue, as well as over half of the comprehensive cancer centers in the United States, to develop more durable therapeutics, overcome therapeutic resistance, and predict patient responses for advanced immunotherapies, cell therapies, gene therapies, vaccines, and regenerative medicines. ABOUT ISOPLEXIS IsoPlexis is a life science technology company that develops solutions to accelerate the development of curative medicines and personalized therapeutics. Our award-winning single-cell proteomics systems reveal unique biological activity in small subsets of cells, allowing researchers to connect to in vivo biology more directly and develop more precise and personalized therapies. Our integrated systems, which were named top innovation or design by Scientist Magazine, Fierce, BIG Innovation, Red Dot, and a variety of other magazines, are used globally to advance the field of single-cell biology into new 'omic possibilities, as our customers generate solutions to overcome the challenges of complex diseases and therapeutics. Our products have been used by researchers all over the world, including the top 15 pharmaceutical companies in the world and 45% of comprehensive cancer centers in the United States.

Read More

Cell and Gene Therapy

IsoPlexis Acquired a Large Portfolio of DNA and RNA Sequencing to Enable Integrated Single-Cell Sequencing and Proteomic Solutions

IsoPlexis | May 26, 2021

IsoPlexis, the leader in functional single-cell proteomics, announced today the acquisition of a large intellectual property portfolio containing 86 patents related to DNA and RNA sequencing. These nucleic acids and sequencing technologies will be immediately integrated with IsoPlexis' single-cell proteomics platforms, enabling a variety of next-generation tests that include numerous 'omic modalities from every single cell. This is the next step in the company's roadmap, enabling researchers to make far earlier connections in their genomic studies, straight to the proteome, which determines each organism's in vivo dynamic biology. The acquired assets will allow IsoPlexis' proprietary proteomics technologies to be integrated with newer proprietary sequencing-based technologies. The asset acquisition adds to IsoPlexis' ongoing efforts to assist its customers in more effectively simplifying complex biology to accelerate the creation of more personalized and curative advanced medicines from bench to bedside. Isoplexis' growing patent portfolio of 153 total patents filed and issued globally will now include sequencing methodologies, allowing for a new level of resolution into the connections between the genome and the proteome of cancer immunology, cell and gene therapy, neurological disease, and other areas. IsoPlexis' proprietary functional proteomics platform is the first to fully characterize and link cellular function to patient outcomes, treatment response, or disease progression using both proteomics and single-cell biology. The single-cell proteomics platform from IsoPlexis, which comprises instruments, chip consumables, and software, offers an end-to-end solution for providing a more complete view of protein function at the cellular level. The platform has been quickly embraced by the top 15 global biopharmaceutical companies in terms of revenue, as well as over half of the comprehensive cancer centers in the United States, to develop more durable therapeutics, overcome therapeutic resistance, and predict patient responses for advanced immunotherapies, cell therapies, gene therapies, vaccines, and regenerative medicines. ABOUT ISOPLEXIS IsoPlexis is a life science technology company that develops solutions to accelerate the development of curative medicines and personalized therapeutics. Our award-winning single-cell proteomics systems reveal unique biological activity in small subsets of cells, allowing researchers to connect to in vivo biology more directly and develop more precise and personalized therapies. Our integrated systems, which were named top innovation or design by Scientist Magazine, Fierce, BIG Innovation, Red Dot, and a variety of other magazines, are used globally to advance the field of single-cell biology into new 'omic possibilities, as our customers generate solutions to overcome the challenges of complex diseases and therapeutics. Our products have been used by researchers all over the world, including the top 15 pharmaceutical companies in the world and 45% of comprehensive cancer centers in the United States.

Read More

Events