Researchers Discover Two New Frog Species in Ecuador

It seems like newly-discovered animal species are being described and named in scientific journals regularly. With that in mind, it shouldn’t come off as much of a surprise to anyone that researchers recently happened upon two frog species that are entirely ‘new to science’ while exploring forests in the Southern Ecuadorian Andes.

Spotlight

Laerdal Medical

Laerdal Medical, one of the world’s leading providers of Healthcare Solutions, is dedicated to helping save lives. Laerdal serves healthcare providers and educators with products and services for Basic Life Support, Advanced Life Support, Simulation, Airway Management, Immobilization, Patient Care, Self-directed Learning and Medical Education.

OTHER ARTICLES
MedTech

Data Analytics: A Groundbreaking Technology in Biotech

Article | September 22, 2022

Biotechnology is a vast discipline of biology that employs diverse biological systems to create solutions that can significantly alter the ways in which they operate across various domains. That said, biotechnology is not a new notion. It has existed for millennia, with ancient civilizations using its earliest incarnations to cultivate crops and create alcoholic beverages. Today, the biotechnology industry has developed by leaps and bounds and has amassed a vast quantity of scientific data through study and research. Given the importance of data in the biotechnology business, it is not difficult to understand why biotech companies utilize data analytics. Modern data analytics tools have made it possible for researchers in the biotech industry to build predictive analytics models and gain knowledge about the most efficient approaches to accomplish their desired goals and objectives. Data analytics is increasingly being adopted by biotech businesses to better understand their industry and foresee any problems down the road. How is Data Analytics Revolutionizing Fields in Biotechnology? Today's business and scientific fields greatly benefit from data. Without the analysis of vast information libraries that provide new insights and enable new innovations, no industry can really advance. Being highly reliant on big data analytics, biotech is not an exception in this regard. With the tools and methods that help scientists systematize their findings and speed up their research for better and safer results, data analytics is making deeper inroads into the biotechnology industry. It is emerging as a crucial link between knowledge and information and is extensively being used for purposes other than just examining the information that is already available. The following are a few of the cutting-edge biotechnology applications of data analytics Genomics and Disease Treatment Pharmaceutical Drug Discovery Drug Recycling and Safety Agriculture and Agri-products Environmental Damage Mitigation Data Analytics Possibilities in Biotechnology With data analytics becoming an integral part of how biotech businesses operate, biotechnologists and related stakeholders need to understand its emergence and crucial role. Data analytics has opened new frontiers in the realm of biotechnology. Thanks to developments in data analytics, research and development activities that once took years may now be accomplished in a matter of months. Also, now scientists have access to biological, social, and environmental insights that can be exploited to create more effective and sustainable products. By understanding the importance of data-related tools and techniques applications, biotech companies are aiming to invest in the popularizing technology to stay updated in the fast-paced biotechnology industry.

Read More
MedTech

AI and Biotechnology: The Future of Healthcare Industry

Article | July 20, 2022

Artificial intelligence has grasped the foundation in biotech. It can have the most innovative impact on biotechnology. AI has already established its presence in our day-to-day life. AI has made the existence of self-driving cars possible. Likewise, the benefits and quality that it can contribute to biotech can also be felt. With AI, bio technicians will be able to enhance virtual screening, overlook preliminary datasets from clinics, and decipher an enormous amount of information. It can also help in improving the medication process by gathering and analyzing every bit of information. The Significance of AI in Biotechnology In the past few years, the application of artificial intelligence in the biotechnology industry has shifted from being sci-fi to sci-fact. A vast number of biotech companies like Deep Genomics are adopting AI for making data-driven decisions and use analytics tools to work efficiently. Unlike the AI robots in sci-fi that are ready to take over the world. AI designed for biotech has been designed to solve certain problems or complete a bunch of tasks by using automated algorithms. The aim of AI technology for biotech is to collect insights along with hidden patterns from large amounts of data. All the different industries of biotech including agriculture, animal, medical, industrial, and bioinformatics are gradually being affected by artificial intelligence. Moreover, the biotech industry is realizing that AI enables them some of the important strength to their business, including: Expanding accessibility Cost-effectiveness Critical predictions Efficient decision-making Research centers like PwC have also estimated output of $15.7 trillion by 2030 solely with AI contribution in industries. A survey revealed that about 44% of life science experts are using AI for R&D activities, as well. Use of AI in Biotechnology Altering Biomedical and Clinical Data So far the most developed use of AI is its ability to read voluminous data records and interpret them. It can prove to be a life-save for bio technicians who would have to examine that much data from research publications by themselves for the validation of their hypothesis. With the help of AI, clinical studies of patients will also become easier as all the examination reports and prescriptions will be stored in one place for cross-reference. Furthermore, it will also help in blending and fetching data into usable formats for analysis. Test Result Prediction Through trial and error, AI along with machine learning can help in predicting the response of the patient to certain drugs to provide more effective outcomes. Drug Design & Discovery AI plays a vital role whether it’s designing a new molecule or identifying new biological targets. It helps in identifying and validating drugs. It reduces the cost and time spent on the entire drug trial process and reaches the market. Personalized Medications for Rare Diseases With the combination of body scan results, patients’ body and analytics, AI can also help in detecting dangerous diseases at an early stage. Improving Process of Manufacturing To improve the process of manufacturing in biotechnology, AI offers a wide range of opportunities. It controls quality, reduces wastage, improves useability, and minimizes the designing time. Moving Towards AI-Enhanced Biotech Future Ever since the concept of artificial intelligence has arrived, being curious by nature, humans have started working towards achieving this goal. It has been growing at a fast pace while showing unbelievable growth and achievements at times. In comparison to the traditional methods used in the biotechnology industry, AI-based methods seem more reliable and accurate. In the upcoming years, it will show its success by improving the quality of health people have. You can also develop your AI-based application or know more about it by taking IT consultations.

Read More
Medical

5 Biotech Stocks Winning the Coronavirus Race

Article | July 14, 2022

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More
MedTech

Biotech in 2022

Article | July 11, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More

Spotlight

Laerdal Medical

Laerdal Medical, one of the world’s leading providers of Healthcare Solutions, is dedicated to helping save lives. Laerdal serves healthcare providers and educators with products and services for Basic Life Support, Advanced Life Support, Simulation, Airway Management, Immobilization, Patient Care, Self-directed Learning and Medical Education.

Related News

New dairy cattle breeding method increases genetic selection efficiency

phys.org | July 05, 2019

Brazilian scientists at Sao Paulo State University (UNESP) collaborating with colleagues at the University of Maryland and the United States Department of Agriculture (USDA) have developed a dairy cattle breeding method that adds a new parameter to genetic selection and conserves or even improves a population's genetic diversity. The study, which is published in Journal of Dairy Science, was funded by the São Paulo Research Foundation—FAPESP and USDA. Besides genetic value associated with milk, fat and protein yields, the new method also takes into consideration the variance in gametic diversity and what the authors call "relative predicted transmitting ability," defined as an individual animal's capacity to transmit its genetic traits to the next generation based on this variance."Not all progeny of highly productive animals inherit this quality. The new method selects animals that will produce extremely productive offspring," said Daniel Jordan de Abreu Santos, who conducted the study while he was a postdoctoral fellow at UNESP's School of Agricultural and Veterinary Sciences (FCAV) in Jaboticabal, São Paulo State.

Read More

Hundreds of sharks and rays tangled in plastic

phys.org | July 05, 2019

Hundreds of sharks and rays have become tangled in plastic waste in the worlds oceans, new research shows. University of Exeter scientists scoured existing published studies and Twitter for shark and ray entanglements, and found reports of more than 1,000 entangled individuals. And they say the true number is likely to be far higher, as few studies have focussed on plastic entanglement among shark and rays. The study says such entanglement—mostly involving lost or discarded fishing gear—is a "far lesser threat" to sharks and rays than commercial fishing, but the suffering it causes is a major animal welfare concern. "One example in the study is a shortfin mako shark with fishing rope wrapped tightly around it," said Kristian Parton, of the Centre for Ecology and Conservation on Exeter's Penryn Campus in Cornwall. "The shark had clearly continued growing after becoming entangled, so the rope—which was covered in barnacles—had dug into its skin and damaged its spine.

Read More

Tracking evolution through teeth: The small-fry ancestor of the great white shark

phys.org | July 05, 2019

Mackerel sharks (Lamniformes) are a group consisting of some of the most iconic sharks we know, including the mako shark (the fastest shark in the world), the infamous great white shark, and Megalodon, the biggest predatory shark that has ever roamed the world's oceans. An international team of researchers around Patrick L. Jambura from the University of Vienna found a unique feature in the teeth of these apex predators, which allowed them to trace back the origin of this group to a small benthic shark from the Middle Jurassic (165 mya). Their study was recently published in the journal Scientific Reports. Similar to humans, shark teeth are composed of two mineralized structures: a hard shell of hypermineralized tissue (in humans enamel, in sharks enameloid) and a dentine core. Depending on the structure of the dentine we distinguish between two different types: orthodentine and osteodentine. Orthodentine has a very compact appearance and is similar to the dentine we can find in human teeth. In shark teeth, orthodentine is confined to the tooth crown. In contrast, the other dentine type is spongious in appearance and resembles real bone and therefore is called osteodentine. It can be found in the root, anchoring the tooth to the jaw and in some species also in the tooth crown where it supports the orthodentine.

Read More

New dairy cattle breeding method increases genetic selection efficiency

phys.org | July 05, 2019

Brazilian scientists at Sao Paulo State University (UNESP) collaborating with colleagues at the University of Maryland and the United States Department of Agriculture (USDA) have developed a dairy cattle breeding method that adds a new parameter to genetic selection and conserves or even improves a population's genetic diversity. The study, which is published in Journal of Dairy Science, was funded by the São Paulo Research Foundation—FAPESP and USDA. Besides genetic value associated with milk, fat and protein yields, the new method also takes into consideration the variance in gametic diversity and what the authors call "relative predicted transmitting ability," defined as an individual animal's capacity to transmit its genetic traits to the next generation based on this variance."Not all progeny of highly productive animals inherit this quality. The new method selects animals that will produce extremely productive offspring," said Daniel Jordan de Abreu Santos, who conducted the study while he was a postdoctoral fellow at UNESP's School of Agricultural and Veterinary Sciences (FCAV) in Jaboticabal, São Paulo State.

Read More

Hundreds of sharks and rays tangled in plastic

phys.org | July 05, 2019

Hundreds of sharks and rays have become tangled in plastic waste in the worlds oceans, new research shows. University of Exeter scientists scoured existing published studies and Twitter for shark and ray entanglements, and found reports of more than 1,000 entangled individuals. And they say the true number is likely to be far higher, as few studies have focussed on plastic entanglement among shark and rays. The study says such entanglement—mostly involving lost or discarded fishing gear—is a "far lesser threat" to sharks and rays than commercial fishing, but the suffering it causes is a major animal welfare concern. "One example in the study is a shortfin mako shark with fishing rope wrapped tightly around it," said Kristian Parton, of the Centre for Ecology and Conservation on Exeter's Penryn Campus in Cornwall. "The shark had clearly continued growing after becoming entangled, so the rope—which was covered in barnacles—had dug into its skin and damaged its spine.

Read More

Tracking evolution through teeth: The small-fry ancestor of the great white shark

phys.org | July 05, 2019

Mackerel sharks (Lamniformes) are a group consisting of some of the most iconic sharks we know, including the mako shark (the fastest shark in the world), the infamous great white shark, and Megalodon, the biggest predatory shark that has ever roamed the world's oceans. An international team of researchers around Patrick L. Jambura from the University of Vienna found a unique feature in the teeth of these apex predators, which allowed them to trace back the origin of this group to a small benthic shark from the Middle Jurassic (165 mya). Their study was recently published in the journal Scientific Reports. Similar to humans, shark teeth are composed of two mineralized structures: a hard shell of hypermineralized tissue (in humans enamel, in sharks enameloid) and a dentine core. Depending on the structure of the dentine we distinguish between two different types: orthodentine and osteodentine. Orthodentine has a very compact appearance and is similar to the dentine we can find in human teeth. In shark teeth, orthodentine is confined to the tooth crown. In contrast, the other dentine type is spongious in appearance and resembles real bone and therefore is called osteodentine. It can be found in the root, anchoring the tooth to the jaw and in some species also in the tooth crown where it supports the orthodentine.

Read More

Events