Research Identifies Potential Treatment for Drug-Resistant Brain Cancer

Researchers have recently found a compound that can eradicate drug-resistant glioblastoma-initiating cells (GICs). This compound, discovered by a collaborative group of Hokkaido University, FUJIFILM Corporation, and the National Institute of Advanced Industrial Science and Technology (AIST) scientists, could potentially be used to eradicate refractory tumors with minimal toxicity. This work was published on September 10 in Neuro-Oncology.

Spotlight

Energy & Biosciences Institute

The Energy Biosciences Institute -- the largest private-public partnership of its kind in the world -- was created to apply advanced knowledge of biology to the field of bioenergy research. Its mission is to help develop advanced biofuels that are green, sustainable, and created from non-food sources. EBI is a collaboration between four research partners: the University of California, Berkeley; the Lawrence Berkeley National Laboratory; the University of Illinois at Urbana-Champaign; and BP.

OTHER ARTICLES
Medical

Top 3 Biotech Clinical Data Management Trends to Watch in 2022

Article | August 16, 2022

Introduction The administration of medical records and data has advanced significantly during the past few decades. Clinical data management, which was once only a small subset of biotech research organizations, has now developed into a mission-critical, specialized unit. In the late 1990s, electronic data capture (EDC) began to alter the traditional function of clinical data management. After that, the data configuration and management of data queries for the EDC system fell under the purview of clinical data management services. Today, clinical data management is not only responsible for managing the clinical data configuration and data queries but also developing and implementing data administration plans, ensuring data accuracy and completeness, and maintaining optimum data security. In recent years, as digital technologies have gained acceptance around the globe, data has become a vital aspect in decision-making across numerous industries, and the life sciences and biotechnology sectors are no exception. Using data has provided granular insights to biotech organizations, assisting them in creating breakthroughs in drug development and medical research and signifying the importance of clinical trial management systems in these medical verticals. The Biggest Biotech Clinical Data Management Trends to Know About Today The future of clinical data management is contingent upon the implementation of systems and regulations. It is imperative for all organizations participating in a medical or life science trial to have transparent rules in place for sharing and retaining patient data. Also, there is a need to have a standardized format for maintaining these records and documents related to trials. This assists biotech organizations in reducing the chances of ambiguity regarding who owns what kind of data or paperwork at any given time. Over the past couple of years, the focus of the life science and biotechnology industries has shifted towards developing more effective medications and therapies, implementing personalized treatment, and finding cures for diseases such as cancer and AIDS. In response to this, a substantial rise in the number of clinical trials is being witnessed globally. As the number of clinical trials continues to accelerate, the spending on these trials rises as well. In response to this, the worldwide cost of conducting clinical trials is anticipated to reach US$ 49.80 billion in 2022. With the transition of the world from traditional to digital, medical professionals and biotech businesses are increasingly shifting towards adopting high-tech and reliable clinical trial management systems for various applications, starting from diagnosis and clinical trials to patient data documentation. But, what are the future trends in biotechnology clinical data management? Let’s discuss. Cloud-Based Clinical Metadata Repositories Automation is emerging as a new frontier in the biotech clinical data management domain, along with other innovative technologies such as artificial intelligence and machine learning. Because of this, life science establishments are witnessing a huge shift from paper-based documentation toward data-based documentation, which is creating mountains of research, compliance, and clinical data. The growing demand for new and more effective medications and drugs is augmenting the need to expedite clinical trials. This is resulting in an increased number of initiatives aimed at optimizing clinical trial processes to prepare and launch successful trials. However, pharmaceutical and biotechnology laboratories are encountering several challenges in collecting, managing, and analyzing metadata due to its complexities. So, what is the best solution to this problem? The answer to this is cloud-based clinical metadata repositories. Clinical research facilities are leveraging advanced, all-in-one, cloud-based clinical metadata repositories to assist them in centralizing and managing metadata; increasing metadata quality, consistency, and accuracy; and speeding up clinical trial management, documentation, and compliance processes. Shift Towards Digital Solutions Electronic Case Report Form Adequate research and accurate data are crucial for a clinical trial to succeed. Whether developing new drugs, medication, or therapies; conducting life science research; or studying the latest clinical trial systems, it is best to use electronic solutions as it reduces the room for mistakes during the transition of clinical data from paper-based format. Realizing this, biotech organizations are shifting towards using electronic case report forms to speed up record retrieval, improve record security, and cut down on operational costs associated with running clinical trials. The electronic case report form assists in lowering the failure rate of the clinical trial, enhancing efficiency, and optimizing security along with improving clinical trial documentation and productivity, further driving its adoption in the medical space. Electronic Clinical Outcome Assessment Electronic clinical outcome assessment is surfacing as one of the fast-growing future trends in biotechnology. It allows clinical trial facilities to automate data entry and improve the reliability of the collected information. The technology enables clinical trial institutions to automatically record patient-provided information about side effects, symptoms, drug timing, and other aspects during the clinical trial for increased precision. It also helps these institutions analyze the results of medication or therapy in clinical trials and lets clinical researchers use medical technologies like biosensor-enabled devices, self-service applications, and medical wearables for evaluation. Hence, biotech clinical facilities are increasingly deploying advanced electronic clinical outcome assessment systems to ensure adherence to protocols and regulations. Clinical Trial Customization The success of a new drug is determined by numerous factors other than its effectiveness, safety, and creativity of its developers, such as a successful clinical trial. Each clinical trial involves a number of decision-making points, and one wrong choice in any of these aspects can jeopardize the success of the entire endeavor. A crucial component of making well-informed decisions is data management, which is a part of clinical study as a whole. Clinical trial customization is emerging as one of the most prominent biotech clinical trial management trends. Every clinical trial is unique and needs a tailored approach to be successful. With the emergence of the trend of personalized treatment around the globe, biotech and pharmaceutical organizations are adopting innovative customized clinical trial management solutions to accelerate the pace of clinical trials and approvals. This is giving clinical researchers innovative ways to come up with new medicines for patients and streamline the clinical data as per the requirements for faster approvals. What Are the Key Clinical Data Management Challenges Faced by Biotech Companies? Groundbreaking medical interventions are of no use without reliable, accurate, and extensive clinical trial data. Without the data, biotech and pharmaceutical companies will not be able to provide the assurance of safety and efficacy required to bring the medication to market. Regulatory bodies such as the Food and Drug Administration (FDA), the Medicines and Healthcare Products Regulatory Agency (MHRA), and others are putting stricter rules in place to ensure the quality of clinical data. In addition, the fast-changing clinical development environment is creating more obstacles for biotech and medical spaces to ensure the accuracy, standard, and completeness of the clinical trial data. Hence, clinical teams are spending valuable time cleaning up data instead of analyzing it. Time spent trying to figure out issues with clinical trial data is detrimental and expensive but also mission-critical. This is because a small issue in the data can lead to numerous consequences, from small delays to calamitous setbacks, making it necessary to rerun clinical trials. This problem will only get more challenging to address as the volume of data and the types of data sources continue to grow. Here are some of the major clinical data management challenges that biotech firms encounter Standardization of Clinical Metadata Stringent Regulatory Compliance Increased Clinical Trial Complexity Mid-Study Changes Why Are Clinical Data Management Systems Garnering Popularity in the Biotech Industry? With the changing regulatory and clinical landscape, biotech and pharmaceutical companies are facing several obstacles in the management of clinical data and clinical trials. In addition, regulatory agencies are moving toward integrated electronic systems, which is making it more and more important for clinical laboratories to change the format of their submissions. Because of this, several biotech clinical labs are focusing on adopting innovative laboratory solutions, such as biotech clinical data management systems, to meet the need for standardized data inputs and replace all manual ways of working with electronic systems. A clinical data management system establishes the framework for error-free data collection and high-quality data submission, resulting in speedier drug discovery and shorter time-to-market. These solutions are gaining huge traction among biotech and pharmaceutical companies, owing to their ability to effectively manage clinical data, accelerate clinical trials, and ensure compliance. Let’s see some of the features of biotech clinical data management software that are most sought after by life-science companies Controlled, standardized data repository. Centralized data analysis and administration. Reduced operational expenditures for clinical data processes. Enhanced process effectiveness. Superior submission quality Compliance with predefined standards. Clinical Data Management Systems: The Future The role of clinical data management systems is evolving at a rapid pace as the life science and medical industries continue to incorporate digital solutions for diverse operations. These systems are being used in a variety of biotech clinical settings, ranging from clinical data compliance to data science and analytics, to help them analyze large and growing volumes of clinical data. Hence, a number of high-tech medical companies are aiming at integrating innovative technologies, such as artificial intelligence and machine learning, into clinical data management software to automate clinical data management tasks, improve clinical data submission, and enhance data quality. These new biotech clinical management technologies are anticipated to help life science laboratories gain a better understanding of diseases and speed up clinical trials in the coming years. FAQ What is a clinical data management system? A clinical data management system (CDMS) is a tool used in clinical research to track, record, and manage clinical trial data across medical establishments such as biotech laboratories. What are the key functions of the biotech clinical data management system? Some of the key functions of biotech clinical data management system are Documentation of Protocols and Regulations Patient Recruitment Real-time Clinical Study Analytics Reporting Investigator Relationship Management Electronic Visit Report Why is a clinical data management system needed for clinical trials today? A clinical data management system helps shorten the time from drug development to marketing by assisting in the collection of high-quality, statistically sound, and accurate data from clinical trials.

Read More
MedTech

Advancement in Genomics Accelerating its Penetration into Precision Health

Article | July 12, 2022

Genomics is an interdisciplinary field of biology emphasizing the structure, editing, evolution, function, and mapping of genomes. It is creating deeper inroads across the precision health domain with the increasing introduction of advanced technologies such as quantum simulation, next-generation sequencing (NGS), and precise genome manipulation. As precision health focuses on providing the proper intervention to the right patient at the right time, genomics increasingly finds applications in human and pathogen genome sequencing in clinical and research spaces. Rising Hereditary Diseases Burden Paving the Way for Genomics in Precision Health In the last few years, a significant surge in the prevalence of diseases and ailments such as diabetes, obesity, baldness, and others has been witnessed across the globe. A history of family members with chronic diseases, such as cancer, diabetes, high blood pressure, hearing issues, and heart disease, can sometimes continue into the next generation. Hence, the study of genes is extensively being conducted for predicting health risks and early treatment of these diseases. It also finds use in CRISPR-based diagnostics and the preparation of precision medication for the individual. In addition, ongoing advancements in genomics are making it possible to identify different genetic traits that persuade people to more widespread diseases and health problems. The Emergence of Genomics Improves Disease Understanding Genomics refers to the study of the complete genetic makeup of a cell or organism. Increasing scientific research in the area substantially contributes to increasing knowledge about the human genome and assists in improving the ability to understand disease etiology, risk, diagnosis, treatment, and prevention. On account of these improvements, innovative genomic technologies and tools are being developed to enable better precision health not only for the individual but for various regional populations as well. The Way Forward With growing preference for personalized medicine and an increasing need for more accurate pathogen detection and diagnostics, genomics is gaining huge popularity across the precision health domain. Also, increasing research activities for developing novel high-precision therapeutics and rising importance of gene study in the prevention, diagnosis, and management of infectious and genetic diseases will further pave the way for genomics in the forthcoming years.

Read More
Research

Better Purification and Recovery in Bioprocessing

Article | July 11, 2022

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More
Industrial Impact

AI and Biotechnology: The Future of Healthcare Industry

Article | January 20, 2021

Artificial intelligence has grasped the foundation in biotech. It can have the most innovative impact on biotechnology. AI has already established its presence in our day-to-day life. AI has made the existence of self-driving cars possible. Likewise, the benefits and quality that it can contribute to biotech can also be felt. With AI, bio technicians will be able to enhance virtual screening, overlook preliminary datasets from clinics, and decipher an enormous amount of information. It can also help in improving the medication process by gathering and analyzing every bit of information. The Significance of AI in Biotechnology In the past few years, the application of artificial intelligence in the biotechnology industry has shifted from being sci-fi to sci-fact. A vast number of biotech companies like Deep Genomics are adopting AI for making data-driven decisions and use analytics tools to work efficiently. Unlike the AI robots in sci-fi that are ready to take over the world. AI designed for biotech has been designed to solve certain problems or complete a bunch of tasks by using automated algorithms. The aim of AI technology for biotech is to collect insights along with hidden patterns from large amounts of data. All the different industries of biotech including agriculture, animal, medical, industrial, and bioinformatics are gradually being affected by artificial intelligence. Moreover, the biotech industry is realizing that AI enables them some of the important strength to their business, including: Expanding accessibility Cost-effectiveness Critical predictions Efficient decision-making Research centers like PwC have also estimated output of $15.7 trillion by 2030 solely with AI contribution in industries. A survey revealed that about 44% of life science experts are using AI for R&D activities, as well. Use of AI in Biotechnology Altering Biomedical and Clinical Data So far the most developed use of AI is its ability to read voluminous data records and interpret them. It can prove to be a life-save for bio technicians who would have to examine that much data from research publications by themselves for the validation of their hypothesis. With the help of AI, clinical studies of patients will also become easier as all the examination reports and prescriptions will be stored in one place for cross-reference. Furthermore, it will also help in blending and fetching data into usable formats for analysis. Test Result Prediction Through trial and error, AI along with machine learning can help in predicting the response of the patient to certain drugs to provide more effective outcomes. Drug Design & Discovery AI plays a vital role whether it’s designing a new molecule or identifying new biological targets. It helps in identifying and validating drugs. It reduces the cost and time spent on the entire drug trial process and reaches the market. Personalized Medications for Rare Diseases With the combination of body scan results, patients’ body and analytics, AI can also help in detecting dangerous diseases at an early stage. Improving Process of Manufacturing To improve the process of manufacturing in biotechnology, AI offers a wide range of opportunities. It controls quality, reduces wastage, improves useability, and minimizes the designing time. Moving Towards AI-Enhanced Biotech Future Ever since the concept of artificial intelligence has arrived, being curious by nature, humans have started working towards achieving this goal. It has been growing at a fast pace while showing unbelievable growth and achievements at times. In comparison to the traditional methods used in the biotechnology industry, AI-based methods seem more reliable and accurate. In the upcoming years, it will show its success by improving the quality of health people have. You can also develop your AI-based application or know more about it by taking IT consultations.

Read More

Spotlight

Energy & Biosciences Institute

The Energy Biosciences Institute -- the largest private-public partnership of its kind in the world -- was created to apply advanced knowledge of biology to the field of bioenergy research. Its mission is to help develop advanced biofuels that are green, sustainable, and created from non-food sources. EBI is a collaboration between four research partners: the University of California, Berkeley; the Lawrence Berkeley National Laboratory; the University of Illinois at Urbana-Champaign; and BP.

Related News

MedTech

Outcomes4Me Partners with Invitae to Offer Genetic Testing to Breast Cancer Patients

Outcomes4Me | October 12, 2021

Outcomes4Me Inc., developer of a leading free mobile app and platform to navigate cancer treatment and care, today announced that it has partnered with Invitae Corporation (NYSE: NVTA), a leading medical genetics company, to expand education and access to genetic testing to breast cancer patients and survivors. The collaboration leverages the strengths of Invitae, which supplies clinical grade genetic testing, and Outcomes4Me’s 360-degree, validated and evidence-based cancer support and treatment options via its free and easy-to-use app. Initially and currently available in the United States, patients can now receive genetic counseling through Invitae’s partnership with Genome Medical, get testing, and upload their results within the Outcomes4Me app.There is a misconception that genetic testing is only useful as a preventative tool prior to a cancer diagnosis. According to Outcomes4Me patient data, almost half of users (46 percent) who qualified for testing (based on NCCN Guidelines®) did not receive testing or did not know if they had received testing. However, genetic testing can provide insights that can help inform and refine precision therapy use and clinical treatment trial enrollment. In addition, genetic testing results can be used to help prevent recurrence and reduce incidence of other inherited cancers. A cancer diagnosis is often overwhelming for patients and their families. Outcomes4Me demystifies cancer by providing the most up-to-date and validated research, support, and treatment options, all grounded in science and data and curated according to the patient’s specific diagnosis. Outcomes4Me partners with the researchers, doctors, and academics that set the rigorous standards of cancer care for all treatment providers, including the National Comprehensive Care Network® (NCCN®), Vanderbilt-Ingram Cancer Center (VICC) and Massachusetts General Hospital (MGH). The collaboration with Invitae expands access to genetic testing, a vitally important tool in the patient’s cancer care arsenal. “Outcomes4Me is an indispensable platform for patients with breast cancer, giving them the personalized knowledge and access to timely new trials and targeted therapies that could lead to better health outcomes. By providing access to our comprehensive genetic testing and counseling services, Outcomes4Me is adding a valuable resource that will empower patients to advance their knowledge, understanding, and therefore, self-advocacy during treatment and survivorship.” Ed Esplin, M.D., Ph.D., FACMG, FACP, Clinical Geneticist at Invitae Unlike popular direct-to-consumer genetic testing services, which test for a few specific genetic variants for certain genes, Invitae provides state-of-the-art clinical grade next-generation sequencing-based (NGS) genetic testing that comprehensively analyses more than 80 genes, including all known mutations of the important BRCA1/BRCA2 genes. This comprehensive approach, combined with associated genetic counseling, not only provides insights for cancer patients, but also for family members who may be at risk. “Our collaboration with Invitae reinforces Outcomes4Me’s mission to give patients back control. Because of this work with Invitae, our valued community now has rare direct access to a much-needed testing service. Outcomes4Me will proudly continue to democratize the best in cancer treatment, research, and support by removing barriers and bias in information flow.” Maya R. Said, Sc. D., Founder and CEO of Outcomes4Me About Invitae Invitae Corporation (NYSE: NVTA) is a leading medical genetics company whose mission is to bring comprehensive genetic information into mainstream medicine to improve healthcare for billions of people. Invitae's goal is to aggregate the world's genetic tests into a single service with higher quality, faster turnaround time, and lower prices. About Outcomes4Me Outcomes4Me is on a mission to improve health outcomes by empowering patients with understandable, relevant and evidence-based information. Outcomes4Me has developed a platform for shared decision-making between patients and providers. The platform harnesses regulatory-grade, real-world data and patient experiences generating deeper insights and better outcomes to improve care and accelerate research. The Outcomes4Me mobile app enables cancer patients to make decisions and take control of their care based on information that is personalized to their specific condition, including finding treatment options, matching to clinical trials, and tracking and managing symptoms. Based in Boston, Massachusetts, Outcomes4Me, a woman-led company, comprises seasoned healthcare, oncology, pharmaceutical, consumer and technology veterans.

Read More

New insights into blood clot mechanisms in cancer patients discovered

Drug Target Review | November 25, 2019

A potential new signalling pathway that may help further the understanding of blood clot formation in cancer patients and help prevent this complication from occurring has been identified by researchers from Boston University School of Medicine (BUSM), US. The researchers examined the levels of different molecules and break down products (known as metabolites) in the blood as well as within blood clots from experimental tumour models. They discovered increased blood levels of two molecules called kynurenine and indoxyl sulfate, both of which are metabolites of the amino acid, tryptophan, often a dietary component. These high levels of kynurenine and indoxyl sulfate were also associated with increased blood clot size in an experimental model. The study shows that blood clot size could be reduced by pharmacologically inhibiting the aryl hydrocarbon receptor (AHR) pathway, a known target of indoxyl sulfate and kynurenine, suggesting that this may be a target for future drug development.

Read More

Cell Death or Cancer Growth: A Question of Cohesion

Technology Networks | November 20, 2019

Activation of CD95, a receptor found on all cancer cells, triggers programmed cell death - or does the opposite, namely stimulates cancer cell growth. Scientists from the German Cancer Research Center (DKFZ) have now shown that the impact of CD95 activation depends on whether there are isolated cancer cells or three-dimensional structures. Individual cells are programmed to die following CD95 activation. In contrast, CD95 activation stimulates growth in clusters of cancer cells, for example in solid tumors. This finding points to new ways of specifically transforming growth-stimulating signals into cell death signals for the cancer cells. The receptor protein CD95 is exposed on the surface of all cancer cells like small antennae. Activation of the receptor by the CD95 ligand (CD95L) triggers apoptosis in the cancer cell - or the exact opposite: "We studied various types of cancer tissue and found that CD95 activation usually stimulates tumor growth under natural conditions," remarked Ana Martin-Villalba, who has been conducting research at DKFZ on the role of CD95 for many years now. She was the first to describe the cancer-promoting effect of CD95 in glioblastomas (malignant brain tumors).

Read More

MedTech

Outcomes4Me Partners with Invitae to Offer Genetic Testing to Breast Cancer Patients

Outcomes4Me | October 12, 2021

Outcomes4Me Inc., developer of a leading free mobile app and platform to navigate cancer treatment and care, today announced that it has partnered with Invitae Corporation (NYSE: NVTA), a leading medical genetics company, to expand education and access to genetic testing to breast cancer patients and survivors. The collaboration leverages the strengths of Invitae, which supplies clinical grade genetic testing, and Outcomes4Me’s 360-degree, validated and evidence-based cancer support and treatment options via its free and easy-to-use app. Initially and currently available in the United States, patients can now receive genetic counseling through Invitae’s partnership with Genome Medical, get testing, and upload their results within the Outcomes4Me app.There is a misconception that genetic testing is only useful as a preventative tool prior to a cancer diagnosis. According to Outcomes4Me patient data, almost half of users (46 percent) who qualified for testing (based on NCCN Guidelines®) did not receive testing or did not know if they had received testing. However, genetic testing can provide insights that can help inform and refine precision therapy use and clinical treatment trial enrollment. In addition, genetic testing results can be used to help prevent recurrence and reduce incidence of other inherited cancers. A cancer diagnosis is often overwhelming for patients and their families. Outcomes4Me demystifies cancer by providing the most up-to-date and validated research, support, and treatment options, all grounded in science and data and curated according to the patient’s specific diagnosis. Outcomes4Me partners with the researchers, doctors, and academics that set the rigorous standards of cancer care for all treatment providers, including the National Comprehensive Care Network® (NCCN®), Vanderbilt-Ingram Cancer Center (VICC) and Massachusetts General Hospital (MGH). The collaboration with Invitae expands access to genetic testing, a vitally important tool in the patient’s cancer care arsenal. “Outcomes4Me is an indispensable platform for patients with breast cancer, giving them the personalized knowledge and access to timely new trials and targeted therapies that could lead to better health outcomes. By providing access to our comprehensive genetic testing and counseling services, Outcomes4Me is adding a valuable resource that will empower patients to advance their knowledge, understanding, and therefore, self-advocacy during treatment and survivorship.” Ed Esplin, M.D., Ph.D., FACMG, FACP, Clinical Geneticist at Invitae Unlike popular direct-to-consumer genetic testing services, which test for a few specific genetic variants for certain genes, Invitae provides state-of-the-art clinical grade next-generation sequencing-based (NGS) genetic testing that comprehensively analyses more than 80 genes, including all known mutations of the important BRCA1/BRCA2 genes. This comprehensive approach, combined with associated genetic counseling, not only provides insights for cancer patients, but also for family members who may be at risk. “Our collaboration with Invitae reinforces Outcomes4Me’s mission to give patients back control. Because of this work with Invitae, our valued community now has rare direct access to a much-needed testing service. Outcomes4Me will proudly continue to democratize the best in cancer treatment, research, and support by removing barriers and bias in information flow.” Maya R. Said, Sc. D., Founder and CEO of Outcomes4Me About Invitae Invitae Corporation (NYSE: NVTA) is a leading medical genetics company whose mission is to bring comprehensive genetic information into mainstream medicine to improve healthcare for billions of people. Invitae's goal is to aggregate the world's genetic tests into a single service with higher quality, faster turnaround time, and lower prices. About Outcomes4Me Outcomes4Me is on a mission to improve health outcomes by empowering patients with understandable, relevant and evidence-based information. Outcomes4Me has developed a platform for shared decision-making between patients and providers. The platform harnesses regulatory-grade, real-world data and patient experiences generating deeper insights and better outcomes to improve care and accelerate research. The Outcomes4Me mobile app enables cancer patients to make decisions and take control of their care based on information that is personalized to their specific condition, including finding treatment options, matching to clinical trials, and tracking and managing symptoms. Based in Boston, Massachusetts, Outcomes4Me, a woman-led company, comprises seasoned healthcare, oncology, pharmaceutical, consumer and technology veterans.

Read More

New insights into blood clot mechanisms in cancer patients discovered

Drug Target Review | November 25, 2019

A potential new signalling pathway that may help further the understanding of blood clot formation in cancer patients and help prevent this complication from occurring has been identified by researchers from Boston University School of Medicine (BUSM), US. The researchers examined the levels of different molecules and break down products (known as metabolites) in the blood as well as within blood clots from experimental tumour models. They discovered increased blood levels of two molecules called kynurenine and indoxyl sulfate, both of which are metabolites of the amino acid, tryptophan, often a dietary component. These high levels of kynurenine and indoxyl sulfate were also associated with increased blood clot size in an experimental model. The study shows that blood clot size could be reduced by pharmacologically inhibiting the aryl hydrocarbon receptor (AHR) pathway, a known target of indoxyl sulfate and kynurenine, suggesting that this may be a target for future drug development.

Read More

Cell Death or Cancer Growth: A Question of Cohesion

Technology Networks | November 20, 2019

Activation of CD95, a receptor found on all cancer cells, triggers programmed cell death - or does the opposite, namely stimulates cancer cell growth. Scientists from the German Cancer Research Center (DKFZ) have now shown that the impact of CD95 activation depends on whether there are isolated cancer cells or three-dimensional structures. Individual cells are programmed to die following CD95 activation. In contrast, CD95 activation stimulates growth in clusters of cancer cells, for example in solid tumors. This finding points to new ways of specifically transforming growth-stimulating signals into cell death signals for the cancer cells. The receptor protein CD95 is exposed on the surface of all cancer cells like small antennae. Activation of the receptor by the CD95 ligand (CD95L) triggers apoptosis in the cancer cell - or the exact opposite: "We studied various types of cancer tissue and found that CD95 activation usually stimulates tumor growth under natural conditions," remarked Ana Martin-Villalba, who has been conducting research at DKFZ on the role of CD95 for many years now. She was the first to describe the cancer-promoting effect of CD95 in glioblastomas (malignant brain tumors).

Read More

Events