Releasing the Handbrake on Exosome Applications

MICHELE WILSON | April 2, 2019 | 67 views

Exosome are tiny vesicles that are derived from multivesicular endosomes. They are released from cells and have been shown to persist in the circulation for hours. As exosomes contain a variety of components (including proteins, lipids, mRNA and DNA) and are taken up by target cells, they are thought to represent a novel form of cellular communication. Given their resilience in extracellular fluid and unique source of origin, it is hoped that knowledge of exosomes could be leveraged for a whole host of diagnostic and therapeutic applications. Despite the great excitement about exosomes, the technology which is needed to advance this area is lacking. To find out more about the current unmet need, we spoke to Jim West, CEO of Clara Biotech, who tells us how his team is working to fill that gap. Michele Wilson (MW): Could you tell us about Clara Biotech and how it came about? Jim West (JW): The foundation of our platform came about in 2014, when Dr. He, our inventor, was working at the University of Kansas Medical Center and they started working on some exosome diagnostics, specifically around cancer. Seeing what they were doing, she was a little bit appalled at the state of the technology and the amount of effort that goes into isolating these exosomes. In addition, the technique lacked repeatability. They were very expertise-oriented. So even running the same person on the same sample over different time periods could result in different outcomes.

Spotlight

Navitor Pharmaceuticals

Navitor Pharmaceuticals, Inc., is a biopharmaceutical company developing novel medicines by targeting cellular nutrient signaling pathways. The company’s proprietary drug discovery platform targets mTORC1, which responds to and integrates the cell’s response to nutrient availability and plays a key role in protein synthesis and cellular growth.

OTHER ARTICLES
MEDTECH

Top 10 biotech IPOs in 2019

Article | October 7, 2022

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More
RESEARCH

Cell Out? Lysate-Based Expression an Option for Personalized Meds

Article | July 11, 2022

Cell-free expression (CFE) is the practice of making a protein without using a living cell. In contrast with cell line-based methods, production is achieved using a fluid containing biological components extracted from a cell, i.e., a lysate. CFE offers potential advantages for biopharma according to Philip Probert, PhD, a senior scientist at the Centre for Process Innovation in the U.K.

Read More
MEDICAL

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | August 16, 2022

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Selexis Cell Line Development Strategies

Article | February 11, 2020

In today’s biotechnology landscape, to be competitive, meet regulations, and achieve market demands, “we must apply Bioprocessing 4.0,” said Igor Fisch, PhD, CEO, Selexis. In fact, in the last decade, “Selexis has evolved from cloning by limiting dilution to automated cell selection to nanofluidic chips and from monoclonality assessment by statistical calculation to proprietary bioinformatic analysis,” he added. Single-use processing systems are an expanding part of the biomanufacturing world; as such, they are a major component of Bioprocessing 4.0. “At Selexis, we use single use throughout our cell line development workflow. Currently, we have incorporated single-use automated bioprocessing systems such as ambr® and the Beacon® optofluidic platform for accelerated cell line development. By using these systems and optimizing our parameters, we were able to achieve high titers in shake flasks. Additionally, the Beacon systems integrate miniaturized cell culture with high-throughput liquid handling automation and cell imaging. This allows us to control, adjust, and monitor programs at the same time,” noted Fisch.

Read More

Spotlight

Navitor Pharmaceuticals

Navitor Pharmaceuticals, Inc., is a biopharmaceutical company developing novel medicines by targeting cellular nutrient signaling pathways. The company’s proprietary drug discovery platform targets mTORC1, which responds to and integrates the cell’s response to nutrient availability and plays a key role in protein synthesis and cellular growth.

Related News

The Universe's First Molecule Discovered Inside Distant Planetary Nebula

labroots | April 26, 2019

The helium hydride cation (HeH+), a molecule formed by the two elements at the top of the periodic table, was first synthesized a by-product in a laboratory back in 1925. Scientists have long suspected that this unorthodox molecule may exist in the interstellar medium since the infancy of our universe, but all previous searches have turned up nothing. Astrophysicists working at NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) collaboration recently reported that they finally confirmed the existence of HeH+ at NGC 702, a planetary nebula 3,000 light-years away. A molecule is defined as two or more atoms linked together through a chemical bond (or bonds). Consisting of two of the lightest elements, one can expect that HeH+ should be among the earliest molecules. However, since helium is an inert gas, it would actually take quite a bit of energy to knock its electrons out and make it form a covalent bond with a hydrogen atom. What makes scientists think that HeH+ preceded any other molecule?

Read More

Atomic structure reveals how cells translate environmental signals

biotech | April 17, 2017

Researchers at the RIKEN Brain Science Institute have determined the atomic resolution structure of a key molecule that translates signals from a cell's local environment into a language that the cell can understand and use.

Read More

The Universe's First Molecule Discovered Inside Distant Planetary Nebula

labroots | April 26, 2019

The helium hydride cation (HeH+), a molecule formed by the two elements at the top of the periodic table, was first synthesized a by-product in a laboratory back in 1925. Scientists have long suspected that this unorthodox molecule may exist in the interstellar medium since the infancy of our universe, but all previous searches have turned up nothing. Astrophysicists working at NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) collaboration recently reported that they finally confirmed the existence of HeH+ at NGC 702, a planetary nebula 3,000 light-years away. A molecule is defined as two or more atoms linked together through a chemical bond (or bonds). Consisting of two of the lightest elements, one can expect that HeH+ should be among the earliest molecules. However, since helium is an inert gas, it would actually take quite a bit of energy to knock its electrons out and make it form a covalent bond with a hydrogen atom. What makes scientists think that HeH+ preceded any other molecule?

Read More

Atomic structure reveals how cells translate environmental signals

biotech | April 17, 2017

Researchers at the RIKEN Brain Science Institute have determined the atomic resolution structure of a key molecule that translates signals from a cell's local environment into a language that the cell can understand and use.

Read More

Events