Releasing the Handbrake on Exosome Applications

Exosome are tiny vesicles that are derived from multivesicular endosomes. They are released from cells and have been shown to persist in the circulation for hours. As exosomes contain a variety of components (including proteins, lipids, mRNA and DNA) and are taken up by target cells, they are thought to represent a novel form of cellular communication. Given their resilience in extracellular fluid and unique source of origin, it is hoped that knowledge of exosomes could be leveraged for a whole host of diagnostic and therapeutic applications. Despite the great excitement about exosomes, the technology which is needed to advance this area is lacking. To find out more about the current unmet need, we spoke to Jim West, CEO of Clara Biotech, who tells us how his team is working to fill that gap. Michele Wilson (MW): Could you tell us about Clara Biotech and how it came about? Jim West (JW): The foundation of our platform came about in 2014, when Dr. He, our inventor, was working at the University of Kansas Medical Center and they started working on some exosome diagnostics, specifically around cancer. Seeing what they were doing, she was a little bit appalled at the state of the technology and the amount of effort that goes into isolating these exosomes. In addition, the technique lacked repeatability. They were very expertise-oriented. So even running the same person on the same sample over different time periods could result in different outcomes.

Spotlight

MiMedx

MiMedx® is an integrated developer, processor and marketer of patent protected regenerative biomaterial products and bioimplants processed from human amniotic membrane, other birth tissues and human skin and bone.

OTHER ARTICLES
Research

Better Purification and Recovery in Bioprocessing

Article | July 11, 2022

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More
MedTech

Laboratory Information Management System for Biotech Labs: Significance & Benefits

Article | October 7, 2022

If you have ever visited the testing laboratory of a large biotechnology company, you will be aware that managing the laboratory's operations single-handedly is no easy task. The greater the size of a lab, the more research and testing activities it must accommodate. A variety of diagnostic tests are prescribed for patients in order to detect various diseases. For example, it may include blood glucose testing for diabetics, lipid panel, or liver panel tests for evaluating cardiac risk and liver function, cultures for diagnosing infections, thyroid function tests, and others. Laboratory management solutions such as laboratory information management systems (LIMS) and other software play a significant role in managing various operational data at biotech laboratories. It is one of the important types of software developed to address thedata management and regulatory challenges of laboratories. The software enhances the operational efficiency of biotech labs by streamlining workflows, proper record-keeping, and eradicating the need for manually maintaining data. What Are the Benefits of Laboratory Information Management Software in Biotechnology? As the trends of digitization and technology continue to create deeper inroads into the biotechnology sector, a significant rise in the adoption of innovative medical software solutions, such as LIMS, is being witnessed for managing research data, testing reports, and post-research results globally. Here are a few reasons that are encouraging biotech facilities to adopt LIMS solutions Real-Time Data Collection and Tracking Previously, collecting and transporting samples was a tedious and time-consuming task. However, the adoption of LIMS with innovative tracking modules has made the job easier. The real-time sample tracking feature of LIMS has made it possible for personnel to collect the research data in real-time and manage and control the workflow with a few mouse clicks on the screen. Increase Revenue LIMS makes it possible to test workflows while giving users complete control over the testing process. A laboratory is able to collect data, schedule equipment maintenance or upgrades, enhance operational efficiency, and maintain a lower overhead with the help of the LIMS, thereby increasing revenue. Streamlined Workflow With its completion monitoring, LIMS speeds up laboratory workflows and keeps track of information. It assigns tasks to the specialist along with keeping a real-time track of the status and completion of each task. LIMS is integrated into the laboratory using lab information, which ultimately speeds up internal processes and streamlines the workflow. Automatic Data Exchange LIMS solutions store data in a centralized database. Automated transfer of data between departments and organizations is one of the major features of LIMS. Through its automated information exchange feature, LIMS improves internal operations, decreases the reporting time for data sharing, and assists in faster decision-making. Final Thoughts As the healthcare sector continues to ride the wave of digital transformation, biotech laboratories are emphasizing adopting newer technologies to keep up with the changes. Citing this trend, laboratory information management systems are becoming crucial for biotech and medical organizations for maintaining research data, instant reporting, and managing confidential, inventory, and financial data with centralized data storage.

Read More
MedTech

Wisconsin biotech companies could play key roles in long-term economic recovery from COVID-19 pandemic

Article | July 13, 2022

Whether it’s called a modern “Manhattan Project” or a medical moon shot, the concept of long-term economic recovery rests on how confident people are they won’t risk serious illness by venturing forth in public again. Wisconsin stands to be a significant part of such an undertaking, whatever it’s called. The shorter-term debate is well under way over the gradual lifting of COVID-19 emergency rules, such as the now-extended “safer-at-home” order in Wisconsin. At least a dozen states, including regional coalitions on the East and West coasts, are exploring next steps as they seek to balance responses to the virus with calls for reopening the economy, at least, in part. Wisconsin’s ability to shape longer-term responses will come from private and public resources, which range from companies engaged in production of diagnostics.

Read More
MedTech

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | July 5, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More

Spotlight

MiMedx

MiMedx® is an integrated developer, processor and marketer of patent protected regenerative biomaterial products and bioimplants processed from human amniotic membrane, other birth tissues and human skin and bone.

Related News

The Universe's First Molecule Discovered Inside Distant Planetary Nebula

labroots | April 26, 2019

The helium hydride cation (HeH+), a molecule formed by the two elements at the top of the periodic table, was first synthesized a by-product in a laboratory back in 1925. Scientists have long suspected that this unorthodox molecule may exist in the interstellar medium since the infancy of our universe, but all previous searches have turned up nothing. Astrophysicists working at NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) collaboration recently reported that they finally confirmed the existence of HeH+ at NGC 702, a planetary nebula 3,000 light-years away. A molecule is defined as two or more atoms linked together through a chemical bond (or bonds). Consisting of two of the lightest elements, one can expect that HeH+ should be among the earliest molecules. However, since helium is an inert gas, it would actually take quite a bit of energy to knock its electrons out and make it form a covalent bond with a hydrogen atom. What makes scientists think that HeH+ preceded any other molecule?

Read More

Atomic structure reveals how cells translate environmental signals

biotech | April 17, 2017

Researchers at the RIKEN Brain Science Institute have determined the atomic resolution structure of a key molecule that translates signals from a cell's local environment into a language that the cell can understand and use.

Read More

The Universe's First Molecule Discovered Inside Distant Planetary Nebula

labroots | April 26, 2019

The helium hydride cation (HeH+), a molecule formed by the two elements at the top of the periodic table, was first synthesized a by-product in a laboratory back in 1925. Scientists have long suspected that this unorthodox molecule may exist in the interstellar medium since the infancy of our universe, but all previous searches have turned up nothing. Astrophysicists working at NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) collaboration recently reported that they finally confirmed the existence of HeH+ at NGC 702, a planetary nebula 3,000 light-years away. A molecule is defined as two or more atoms linked together through a chemical bond (or bonds). Consisting of two of the lightest elements, one can expect that HeH+ should be among the earliest molecules. However, since helium is an inert gas, it would actually take quite a bit of energy to knock its electrons out and make it form a covalent bond with a hydrogen atom. What makes scientists think that HeH+ preceded any other molecule?

Read More

Atomic structure reveals how cells translate environmental signals

biotech | April 17, 2017

Researchers at the RIKEN Brain Science Institute have determined the atomic resolution structure of a key molecule that translates signals from a cell's local environment into a language that the cell can understand and use.

Read More

Events