Programming bacteria to fight cancer

The ability to program living cells to behave in specific ways under certain conditions is creating new opportunities in medicine. A recent mouse study in which researchers programmed bacteria to help fight cancer is an example. Some tumors thrive and spread because their cells send out a "don't eat me" signal that makes the immune system leave them alone. Tumor cells that don't send the signal are vulnerable to macrophages and other immune cells that can engulf and digest them.

Spotlight

Cell Signaling Technology (CST)

Founded by research scientists in 1999, Cell Signaling Technology (CST) is a private, family-owned company headquartered in Danvers, Massachusetts with over 400 employees worldwide. Active in the field of applied systems biology research, particularly as it relates to cancer, CST understands the importance of using antibodies with high levels of specificity and lot-to-lot consistency. It’s why we produce all of our antibodies in house, and perform painstaking validations for multiple applications. And the same CST scientists who produce our antibodies also provide technical support for customers, helping them design experiments, troubleshoot, and achieve reliable results. We do this because that’s what we'd want if we were in the lab. Because, actually, we are.

OTHER ARTICLES
MedTech

Next-Gen Gene Therapy to Counter Complex Diseases

Article | July 12, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
MedTech

Better Purification and Recovery in Bioprocessing

Article | October 7, 2022

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More
MedTech

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | July 11, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More

Wisconsin biotech companies could play key roles in long-term economic recovery from COVID-19 pandemic

Article | April 19, 2020

Whether it’s called a modern “Manhattan Project” or a medical moon shot, the concept of long-term economic recovery rests on how confident people are they won’t risk serious illness by venturing forth in public again. Wisconsin stands to be a significant part of such an undertaking, whatever it’s called. The shorter-term debate is well under way over the gradual lifting of COVID-19 emergency rules, such as the now-extended “safer-at-home” order in Wisconsin. At least a dozen states, including regional coalitions on the East and West coasts, are exploring next steps as they seek to balance responses to the virus with calls for reopening the economy, at least, in part. Wisconsin’s ability to shape longer-term responses will come from private and public resources, which range from companies engaged in production of diagnostics.

Read More

Spotlight

Cell Signaling Technology (CST)

Founded by research scientists in 1999, Cell Signaling Technology (CST) is a private, family-owned company headquartered in Danvers, Massachusetts with over 400 employees worldwide. Active in the field of applied systems biology research, particularly as it relates to cancer, CST understands the importance of using antibodies with high levels of specificity and lot-to-lot consistency. It’s why we produce all of our antibodies in house, and perform painstaking validations for multiple applications. And the same CST scientists who produce our antibodies also provide technical support for customers, helping them design experiments, troubleshoot, and achieve reliable results. We do this because that’s what we'd want if we were in the lab. Because, actually, we are.

Related News

Novel peptide could lead to antibiotic for drug-resistant bacteria

Drug Target Review | November 22, 2019

An international team of researchers has discovered a novel peptide that attacks gram negative bacteria at a previously unknown site of action. Germs such as Escherichia coli and Klebsiella pneumoniae have become resistant to the most – and in some cases all – currently available antibiotics. Their additional external membrane makes these difficult to attack as it protects the bacteria by preventing many substances from getting into the cell interior. Especially for the treatment of diseases caused by these so-called gram negative bacteria, there is a lack of new active substances. “Since the 1960s, scientists have not succeeded in developing a new class of antibiotics effective against gram negative bacteria, but this could now be possible with the help of this peptide,” said Professor Till Schäberle from the Institute of Insect Biotechnology at Justus Liebig University Giessen (JLU) and project leader at the DZIF, whose research group was involved in the discovery.

Read More

Gut Bacteria May Impact Aging

Technology Networks | November 19, 2019

An international research team led by Nanyang Technological University, Singapore (NTU Singapore) has found that microorganisms living in the gut may alter the ageing process, which could lead to the development of food-based treatment to slow it down. All living organisms, including human beings, coexist with a myriad of microbial species living in and on them, and research conducted over the last 20 years has established their important role in nutrition, physiology, metabolism and behaviour. Using mice, the team led by Professor Sven Pettersson from the NTU Lee Kong Chian School of Medicine, transplanted gut microbes from old mice (24 months old) into young, germ-free mice (6 weeks old). After eight weeks, the young mice had increased intestinal growth and production of neurons in the brain, known as neurogenesis. The team showed that the increased neurogenesis was due to an enrichment of gut microbes that produce a specific short chain fatty acid, called butyrate. Butyrate is produced through microbial fermentation of dietary fibres in the lower intestinal tract and stimulates production of a pro-longevity hormone called FGF21, which plays an important role in regulating the body’s energy and metabolism. As we age, butyrate production is reduced.

Read More

Having a Certain Type of Bacteria in Your Guts May Increase Risk of Developing Bowel Cancer

Technology Networks | November 04, 2019

In the first study to use a technique called Mendelian randomization to investigate the causal role played by bacteria in the development of bowel cancer, Dr Kaitlin Wade, from the University of Bristol, told the 2019 NCRI Cancer Conference: “We found evidence that the presence of an unclassified type of bacteria from a bacterial group called Bacteroidales increased the risk of bowel cancer by between 2-15%. “This means that, on average, people with this type of bacteria within their gut may have a slightly higher risk of bowel cancer compared to those who don’t. We were able to use Mendelian randomization to understand the causal role that these bacteria may have on the disease. Our findings support previous studies that have shown that Bacteroidales bacteria are more likely to be present, and in larger quantities, in individuals with bowel cancer compared to those without the disease.” The microbiome is a community of microorganisms, bacteria in this case, that occur naturally in the body. There is increasing evidence that the make-up of the microbiome plays a role in the human health and the body’s susceptibility to disease. The human gut microbiome, which contains approximately three trillion bacteria, aids digestion and provides protection against infections. It is determined by a person’s individual genetic makeup and their environment, so is unique to each person. It also remains relatively stable across a person’s life, unless it is affected by antibiotics, an illness or a change of diet, among other things.

Read More

Novel peptide could lead to antibiotic for drug-resistant bacteria

Drug Target Review | November 22, 2019

An international team of researchers has discovered a novel peptide that attacks gram negative bacteria at a previously unknown site of action. Germs such as Escherichia coli and Klebsiella pneumoniae have become resistant to the most – and in some cases all – currently available antibiotics. Their additional external membrane makes these difficult to attack as it protects the bacteria by preventing many substances from getting into the cell interior. Especially for the treatment of diseases caused by these so-called gram negative bacteria, there is a lack of new active substances. “Since the 1960s, scientists have not succeeded in developing a new class of antibiotics effective against gram negative bacteria, but this could now be possible with the help of this peptide,” said Professor Till Schäberle from the Institute of Insect Biotechnology at Justus Liebig University Giessen (JLU) and project leader at the DZIF, whose research group was involved in the discovery.

Read More

Gut Bacteria May Impact Aging

Technology Networks | November 19, 2019

An international research team led by Nanyang Technological University, Singapore (NTU Singapore) has found that microorganisms living in the gut may alter the ageing process, which could lead to the development of food-based treatment to slow it down. All living organisms, including human beings, coexist with a myriad of microbial species living in and on them, and research conducted over the last 20 years has established their important role in nutrition, physiology, metabolism and behaviour. Using mice, the team led by Professor Sven Pettersson from the NTU Lee Kong Chian School of Medicine, transplanted gut microbes from old mice (24 months old) into young, germ-free mice (6 weeks old). After eight weeks, the young mice had increased intestinal growth and production of neurons in the brain, known as neurogenesis. The team showed that the increased neurogenesis was due to an enrichment of gut microbes that produce a specific short chain fatty acid, called butyrate. Butyrate is produced through microbial fermentation of dietary fibres in the lower intestinal tract and stimulates production of a pro-longevity hormone called FGF21, which plays an important role in regulating the body’s energy and metabolism. As we age, butyrate production is reduced.

Read More

Having a Certain Type of Bacteria in Your Guts May Increase Risk of Developing Bowel Cancer

Technology Networks | November 04, 2019

In the first study to use a technique called Mendelian randomization to investigate the causal role played by bacteria in the development of bowel cancer, Dr Kaitlin Wade, from the University of Bristol, told the 2019 NCRI Cancer Conference: “We found evidence that the presence of an unclassified type of bacteria from a bacterial group called Bacteroidales increased the risk of bowel cancer by between 2-15%. “This means that, on average, people with this type of bacteria within their gut may have a slightly higher risk of bowel cancer compared to those who don’t. We were able to use Mendelian randomization to understand the causal role that these bacteria may have on the disease. Our findings support previous studies that have shown that Bacteroidales bacteria are more likely to be present, and in larger quantities, in individuals with bowel cancer compared to those without the disease.” The microbiome is a community of microorganisms, bacteria in this case, that occur naturally in the body. There is increasing evidence that the make-up of the microbiome plays a role in the human health and the body’s susceptibility to disease. The human gut microbiome, which contains approximately three trillion bacteria, aids digestion and provides protection against infections. It is determined by a person’s individual genetic makeup and their environment, so is unique to each person. It also remains relatively stable across a person’s life, unless it is affected by antibiotics, an illness or a change of diet, among other things.

Read More

Events