Programming bacteria to fight cancer

CATHARINE PADDOCK | July 4, 2019 | 62 views

The ability to program living cells to behave in specific ways under certain conditions is creating new opportunities in medicine. A recent mouse study in which researchers programmed bacteria to help fight cancer is an example. Some tumors thrive and spread because their cells send out a "don't eat me" signal that makes the immune system leave them alone. Tumor cells that don't send the signal are vulnerable to macrophages and other immune cells that can engulf and digest them.

Spotlight

Amsbio

Founded in 1987, AMS Biotechnology (AMSBIO) is recognised today as a leading company contributing to the acceleration of discovery through the provision of cutting-edge life science technology products and services for research and development in the medical, nutrition, cosmetics and energy industries.

OTHER ARTICLES
MEDTECH

Top 10 biotech IPOs in 2019

Article | July 16, 2022

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More
MEDTECH

Cell Out? Lysate-Based Expression an Option for Personalized Meds

Article | October 7, 2022

Cell-free expression (CFE) is the practice of making a protein without using a living cell. In contrast with cell line-based methods, production is achieved using a fluid containing biological components extracted from a cell, i.e., a lysate. CFE offers potential advantages for biopharma according to Philip Probert, PhD, a senior scientist at the Centre for Process Innovation in the U.K.

Read More
MEDTECH

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | July 13, 2022

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Selexis Cell Line Development Strategies

Article | February 11, 2020

In today’s biotechnology landscape, to be competitive, meet regulations, and achieve market demands, “we must apply Bioprocessing 4.0,” said Igor Fisch, PhD, CEO, Selexis. In fact, in the last decade, “Selexis has evolved from cloning by limiting dilution to automated cell selection to nanofluidic chips and from monoclonality assessment by statistical calculation to proprietary bioinformatic analysis,” he added. Single-use processing systems are an expanding part of the biomanufacturing world; as such, they are a major component of Bioprocessing 4.0. “At Selexis, we use single use throughout our cell line development workflow. Currently, we have incorporated single-use automated bioprocessing systems such as ambr® and the Beacon® optofluidic platform for accelerated cell line development. By using these systems and optimizing our parameters, we were able to achieve high titers in shake flasks. Additionally, the Beacon systems integrate miniaturized cell culture with high-throughput liquid handling automation and cell imaging. This allows us to control, adjust, and monitor programs at the same time,” noted Fisch.

Read More

Spotlight

Amsbio

Founded in 1987, AMS Biotechnology (AMSBIO) is recognised today as a leading company contributing to the acceleration of discovery through the provision of cutting-edge life science technology products and services for research and development in the medical, nutrition, cosmetics and energy industries.

Related News

Novel peptide could lead to antibiotic for drug-resistant bacteria

Drug Target Review | November 22, 2019

An international team of researchers has discovered a novel peptide that attacks gram negative bacteria at a previously unknown site of action. Germs such as Escherichia coli and Klebsiella pneumoniae have become resistant to the most – and in some cases all – currently available antibiotics. Their additional external membrane makes these difficult to attack as it protects the bacteria by preventing many substances from getting into the cell interior. Especially for the treatment of diseases caused by these so-called gram negative bacteria, there is a lack of new active substances. “Since the 1960s, scientists have not succeeded in developing a new class of antibiotics effective against gram negative bacteria, but this could now be possible with the help of this peptide,” said Professor Till Schäberle from the Institute of Insect Biotechnology at Justus Liebig University Giessen (JLU) and project leader at the DZIF, whose research group was involved in the discovery.

Read More

Gut Bacteria May Impact Aging

Technology Networks | November 19, 2019

An international research team led by Nanyang Technological University, Singapore (NTU Singapore) has found that microorganisms living in the gut may alter the ageing process, which could lead to the development of food-based treatment to slow it down. All living organisms, including human beings, coexist with a myriad of microbial species living in and on them, and research conducted over the last 20 years has established their important role in nutrition, physiology, metabolism and behaviour. Using mice, the team led by Professor Sven Pettersson from the NTU Lee Kong Chian School of Medicine, transplanted gut microbes from old mice (24 months old) into young, germ-free mice (6 weeks old). After eight weeks, the young mice had increased intestinal growth and production of neurons in the brain, known as neurogenesis. The team showed that the increased neurogenesis was due to an enrichment of gut microbes that produce a specific short chain fatty acid, called butyrate. Butyrate is produced through microbial fermentation of dietary fibres in the lower intestinal tract and stimulates production of a pro-longevity hormone called FGF21, which plays an important role in regulating the body’s energy and metabolism. As we age, butyrate production is reduced.

Read More

Having a Certain Type of Bacteria in Your Guts May Increase Risk of Developing Bowel Cancer

Technology Networks | November 04, 2019

In the first study to use a technique called Mendelian randomization to investigate the causal role played by bacteria in the development of bowel cancer, Dr Kaitlin Wade, from the University of Bristol, told the 2019 NCRI Cancer Conference: “We found evidence that the presence of an unclassified type of bacteria from a bacterial group called Bacteroidales increased the risk of bowel cancer by between 2-15%. “This means that, on average, people with this type of bacteria within their gut may have a slightly higher risk of bowel cancer compared to those who don’t. We were able to use Mendelian randomization to understand the causal role that these bacteria may have on the disease. Our findings support previous studies that have shown that Bacteroidales bacteria are more likely to be present, and in larger quantities, in individuals with bowel cancer compared to those without the disease.” The microbiome is a community of microorganisms, bacteria in this case, that occur naturally in the body. There is increasing evidence that the make-up of the microbiome plays a role in the human health and the body’s susceptibility to disease. The human gut microbiome, which contains approximately three trillion bacteria, aids digestion and provides protection against infections. It is determined by a person’s individual genetic makeup and their environment, so is unique to each person. It also remains relatively stable across a person’s life, unless it is affected by antibiotics, an illness or a change of diet, among other things.

Read More

Novel peptide could lead to antibiotic for drug-resistant bacteria

Drug Target Review | November 22, 2019

An international team of researchers has discovered a novel peptide that attacks gram negative bacteria at a previously unknown site of action. Germs such as Escherichia coli and Klebsiella pneumoniae have become resistant to the most – and in some cases all – currently available antibiotics. Their additional external membrane makes these difficult to attack as it protects the bacteria by preventing many substances from getting into the cell interior. Especially for the treatment of diseases caused by these so-called gram negative bacteria, there is a lack of new active substances. “Since the 1960s, scientists have not succeeded in developing a new class of antibiotics effective against gram negative bacteria, but this could now be possible with the help of this peptide,” said Professor Till Schäberle from the Institute of Insect Biotechnology at Justus Liebig University Giessen (JLU) and project leader at the DZIF, whose research group was involved in the discovery.

Read More

Gut Bacteria May Impact Aging

Technology Networks | November 19, 2019

An international research team led by Nanyang Technological University, Singapore (NTU Singapore) has found that microorganisms living in the gut may alter the ageing process, which could lead to the development of food-based treatment to slow it down. All living organisms, including human beings, coexist with a myriad of microbial species living in and on them, and research conducted over the last 20 years has established their important role in nutrition, physiology, metabolism and behaviour. Using mice, the team led by Professor Sven Pettersson from the NTU Lee Kong Chian School of Medicine, transplanted gut microbes from old mice (24 months old) into young, germ-free mice (6 weeks old). After eight weeks, the young mice had increased intestinal growth and production of neurons in the brain, known as neurogenesis. The team showed that the increased neurogenesis was due to an enrichment of gut microbes that produce a specific short chain fatty acid, called butyrate. Butyrate is produced through microbial fermentation of dietary fibres in the lower intestinal tract and stimulates production of a pro-longevity hormone called FGF21, which plays an important role in regulating the body’s energy and metabolism. As we age, butyrate production is reduced.

Read More

Having a Certain Type of Bacteria in Your Guts May Increase Risk of Developing Bowel Cancer

Technology Networks | November 04, 2019

In the first study to use a technique called Mendelian randomization to investigate the causal role played by bacteria in the development of bowel cancer, Dr Kaitlin Wade, from the University of Bristol, told the 2019 NCRI Cancer Conference: “We found evidence that the presence of an unclassified type of bacteria from a bacterial group called Bacteroidales increased the risk of bowel cancer by between 2-15%. “This means that, on average, people with this type of bacteria within their gut may have a slightly higher risk of bowel cancer compared to those who don’t. We were able to use Mendelian randomization to understand the causal role that these bacteria may have on the disease. Our findings support previous studies that have shown that Bacteroidales bacteria are more likely to be present, and in larger quantities, in individuals with bowel cancer compared to those without the disease.” The microbiome is a community of microorganisms, bacteria in this case, that occur naturally in the body. There is increasing evidence that the make-up of the microbiome plays a role in the human health and the body’s susceptibility to disease. The human gut microbiome, which contains approximately three trillion bacteria, aids digestion and provides protection against infections. It is determined by a person’s individual genetic makeup and their environment, so is unique to each person. It also remains relatively stable across a person’s life, unless it is affected by antibiotics, an illness or a change of diet, among other things.

Read More

Events