Our Microbiomes Might Shape Our Social Lives

It is early morning on a wide plain in Amboseli National Park in southern Kenya. With a small Dixie cup and a wooden tongue depressor, Susan Alberts picks up a fecal sample left by a female baboon named Yoruba. Alberts is an eminent primatologist. She is both the chair of the department of evolutionary anthropology and a member of the biology department at Duke University, and the co-director of the Amboseli Baboon Research Project. But this morning, she has the less-than-glamorous job of preparing Yoruba’s poop. Alberts carries the cup to her makeshift field laboratory — the hood of a mud-spattered 4×4 — and divides the sample among several cups, marking each with identifying details. She then treats each sample with specific chemicals according to how it will be used. “That’s for Beth,” Alberts says, as she adds some formalin to one of the Dixie cups. Beth Archie is a biologist at the University of Notre Dame and an associate director at Amboseli who heads the project’s microbiome research.

Spotlight

Sunrise Genetics Inc.

Sunrise Genetics (HEMPGENE | MARIGENE) is based out of Colorado and specializes in the development and application of different genomic tools used to advance the breeding efforts of Cannabis. We are a small, collaborative group of Cannabis scientists, professionals, and advocates, who partner with industry-leading breeders and cultivators to apply evolving genomic knowledge to target improvement of desired traits, accelerate breeding, and discover the commercial and industrial potential of Cannabis.

OTHER ARTICLES
Medical

Expansion of BioPharma: Opportunities and Investments

Article | August 16, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
Medical

Next-Gen Gene Therapy to Counter Complex Diseases

Article | July 14, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
MedTech

Nanostructures: Emerging as Effective Carriers for Drug Delivery

Article | October 7, 2022

Natural remedies have been employed in medicine since antiquity. However, a large number of them fail to go past the clinical trial stages. In vivo instability, poor solubility and bioavailability, a lack of target-specific delivery, poor absorption, and side effects of the medication are only a few of the problems caused by the use of large-sized materials in drug administration. Therefore, adopting novel drug delivery systems with targeted medications may be a solution to address these pressing problems. Nanotechnology has received tremendous attention in recent years and has been demonstrated to help blur the boundaries between the biological and physical sciences. With great success, it plays a vital part in enhanced medication formulations, targeted venues, and controlled drug release and delivery. Limitations of Traditional Delivery Trigger the Adoption of Nanoparticles The field of nanotechnology and the creation of drug formulations based on nanoparticles is one that is expanding and showcasing great potential. It has been thoroughly researched in an effort to develop new methods of diagnosis and treatment and to overcome the limitations of several diseases' current therapies. As a result, nanoparticles are being used to improve the therapeutic effectiveness and boost patient adherence to treatment by increasing medication bioavailability, drug accumulation at a particular spot, and reducing drug adverse effects. The nanoparticles could be transformed into intelligent systems housing therapeutic and imaging agents by manipulating their surface properties, size, correct drug load, and release with targeted drug delivery. Nanostructures facilitate the release of combination medications at the prescribed dose since they remain in the blood circulation system for a long time. Therefore, they result in fewer plasma fluctuations with decreased side effects. Due to their nanoscale, these structures can easily enter the tissue system, promote the absorption of drugs by cells, make medication administration more effective, and ensure that the medicine acts at the targeted location. The Way Ahead Nanomedicine and nano-delivery systems are a comparatively new but fast-evolving science in which nanoscale materials are used as diagnostic tools to deliver drug molecules at precisely targeted sites in a controlled manner. It is finding applications for the treatment of diseases such as cardiovascular, neurodegenerative, cancer, ocular, AIDS, and diabetes, among others. With more research and technological advancement, these drug delivery solutions will open up huge opportunities for companies that work with them.

Read More
MedTech

How to Choose a Reliable Biotech Clinical Trial Management System?

Article | October 7, 2022

Introduction The medical and life-science industries are experiencing a robust transformation with the increasing prevalence of various types of diseases, including infectious diseases, chronic disorders, and acute conditions around the world. As a result, a significant rise in demand for more effective therapeutic drugs and bionics is being witnessed, leading to a swift increase in the number of clinical trials. For a successful trial, it is important for biotech companies to ensure the data submitted to regulatory bodies regarding clinical trials is accurate, reliable, and definitive from an ethical point of view. A reliable clinical trial management system plays a vital role in collecting, monitoring, and managing clinical data. The availability of high-quality clinical data also helps clinical research institutions make efficient treatment decisions and provide proper patient care. Hence, a number of biotech companies and research organizations are focusing on leveraging innovative clinical trial management solutions to handle a large amount of data, particularly in multi-center trials, and generate reliable, high-quality, and statistically sound data from clinical trials. However, selecting the most appropriate and reliable clinical trial management system is vital for the clinical trial's success. Let's see some of the steps that will assist these firms in choosing the right CTMS. Key Steps for Selecting Right Biotech Clinical Trial Management System Prioritize Study Needs Considering and prioritizing study needs is a crucial step in choosing the most reliable clinical trial management system for biotech companies. Prioritizing helps them to identify a solution that improves the study's quality and removes uncertainty for researchers when faced with difficult choices. Hence, biotech and life-science organizations should choose a clinical trial system that is simple to use, well-organized, and suitably designed to minimize the number of clicks required to complete a task. Select CTMS with Multiple Integrations Integrated clinical trial management systems provide the best value for the companies’ funds as they guarantee the smooth functioning of research protocols. In addition, integrations are necessary to fully understand the importance and advantages of clinical trial management software for ensuring smooth transitions between site management and data collection. Biotech and clinical research should look for CTMS platforms that can integrate with electronic medical record (EMR) platforms and clinical research process content (CRPC) billing grids. This will allow them to use the same billing designations and ensure compliance while minimizing the need for duplicate processes. Ensure System Compliance and Security Clinical research organizations need to adhere to a plethora of complex regulations in order to ensure compliance with one of the most challenging environments of principles, which is information security and privacy. Security and system compliance are vital aspects of choosing the right CTMS solutions for biotech firms as they assist in building trust and form a part of the system’s duties. While selecting CTMS systems, it is essential for companies engaged in clinical research to ensure that these platforms are able to configure both, group and individual permissions, along with having a data backup and recovery plan for hosted systems. This will allow companies to assess the privacy and security implications of research and anticipate complications that may arise in each phase of the project. Assess the Scalability Choosing a scalable CTMS that can accommodate various types of fluctuations and expansions enables biotech and clinical firms to quickly adapt to fast-changing trends and demand spikes while reducing maintenance costs and enhancing user agility. As scalability also means secure and expanded data storage, these businesses should instead use SaaS solutions than manually manage an ever-growing collection of hard drives. The right CTMS ensures accommodating the firm’s availability requirements without incurring the capital costs associated with expanding a physical infrastructure. The Closing Thought A well-executed and successful clinical trial involves multiple stages and processes. Several quality controls and stringent adherence to regulations are essential for the steps, along with efficient cross-departmental processes and procedures. Incorporating the right CTMS paves the way for paperless data collection, regulatory filing, and fiscal management tools for biotech researchers and administrative personnel.

Read More

Spotlight

Sunrise Genetics Inc.

Sunrise Genetics (HEMPGENE | MARIGENE) is based out of Colorado and specializes in the development and application of different genomic tools used to advance the breeding efforts of Cannabis. We are a small, collaborative group of Cannabis scientists, professionals, and advocates, who partner with industry-leading breeders and cultivators to apply evolving genomic knowledge to target improvement of desired traits, accelerate breeding, and discover the commercial and industrial potential of Cannabis.

Related News

How Microbiomes Could Save the Planet

Scientific American | September 19, 2019

With antibiotic resistance on the rise, the earth's rivers and water sources suffering from chronic levels of pollution, and industrialized farming damaging ecosystems crucial to the health of humans and the planet, scientists are searching for innovative solutions to the global emergency we are confronted with. Even if many of us are aware that certain types of bacteria are important for human health, it's not so widely known that carefully balanced communities of microorganisms, called microbiomes, are crucial for environmental health and thriving ecosystems. Researchers are only just beginning to grasp the full significance of the microbiome and how it affects humans and the environment. With the right tools, researchers can start to understand these connections to help us make better choices about the products we produce and use and the environmental standards we employ, so that we can create a healthier and more sustainable planet. All of us have microbiome populations, made up of a unique combination of bacteria, viruses and fungi. Our gut, mouth and skin each host their own unique microbiome community vital for maintaining a robust immune system, a healthy gut, a resilient skin barrier and overall good health.

Read More

How Microbiomes Could Save the Planet

Scientific American | September 19, 2019

With antibiotic resistance on the rise, the earth's rivers and water sources suffering from chronic levels of pollution, and industrialized farming damaging ecosystems crucial to the health of humans and the planet, scientists are searching for innovative solutions to the global emergency we are confronted with. Even if many of us are aware that certain types of bacteria are important for human health, it's not so widely known that carefully balanced communities of microorganisms, called microbiomes, are crucial for environmental health and thriving ecosystems. Researchers are only just beginning to grasp the full significance of the microbiome and how it affects humans and the environment. With the right tools, researchers can start to understand these connections to help us make better choices about the products we produce and use and the environmental standards we employ, so that we can create a healthier and more sustainable planet. All of us have microbiome populations, made up of a unique combination of bacteria, viruses and fungi. Our gut, mouth and skin each host their own unique microbiome community vital for maintaining a robust immune system, a healthy gut, a resilient skin barrier and overall good health.

Read More

Events