Of Mice and Men: New Light and Sound Combination Therapy May Treat Alzheimer's

April 22, 2019 | 27 views

As of 2018, 5.7 million Americans are living with Alzheimer's disease, the pervasive brain disorder that causes eventual deterioration of cognitive, physical and behavioral abilities. While Alzheimer's patients can be treated for symptoms or pain, the disease has no cure, and no current treatment can slow its progression. Recently published research by Massachusetts Institute of Technology (MIT) neuroscientists, however, indicates that amyloid plaques could be reduced via brain wave stimulation. “By exposing mice to a unique combination of light and sound, MIT neuroscientists have shown that they can improve cognitive and memory impairments similar to those seen in Alzheimer’s patients,” quotes MIT News.

Spotlight

National Institute of Biotechnology

National Institute of Biotechnology (NIB) is a government research institute of Bangladesh. NIB is involved in Biotechnology Research, Consultancy, Collaboration and Technology Transferring.

OTHER ARTICLES
MEDTECH

Expansion of BioPharma: Opportunities and Investments

Article | July 5, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
MEDICAL

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | July 14, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More
MEDTECH

Biotech in 2022

Article | July 20, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More
MEDTECH

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | July 5, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More

Spotlight

National Institute of Biotechnology

National Institute of Biotechnology (NIB) is a government research institute of Bangladesh. NIB is involved in Biotechnology Research, Consultancy, Collaboration and Technology Transferring.

Related News

Neurocrine Biosciences and Xenon Launch Up-to-$1.7B Epilepsy, Neuroscience Collaboration

GEN | December 02, 2019

Neurocrine Biosciences has agreed to exclusively license and co-develop Xenon Pharmaceuticals’ Phase I epilepsy candidate XEN901 as a treatment for children—as well as develop three preclinical compounds, the companies said today—through a collaboration that could generate up to $1.7 billion for Xenon. XEN901 is designed as a highly selective Nav1.6 sodium channel inhibitor being developed to treat children with SCN8A developmental and epileptic encephalopathy (SCN8A-DEE) and other potential indications, including adult focal epilepsy. Xenon has completed a Phase I trial of a powder-in-capsule formulation of XEN901 in healthy adults. However, Xenon has also developed a pediatric-specific, granule formulation of XEN901, and has completed juvenile toxicology studies intended to support pediatric development of the drug candidate. “With its proven expertise in developing and commercializing treatments for neurological disorders, we believe Neurocrine Biosciences is an ideal partner to maximize the potential value of XEN901 for patients,” Xenon CEO Simon Pimstone, MD, PhD, FRCPC, said in a statement.

Read More

Using Machine Learning To Reveal How the Brain Encodes Memories

Technology Networks | November 28, 2019

Researchers working in The N.1 Institute for Health at NUS, led by Assistant Professor Camilo Libedinsky from NUS Psychology, and Senior Lecturer Shih-Cheng Yen from the Innovation and Design Programme at NUS Engineering, have discovered that a population of neurons in the brain’s frontal lobe contain stable short-term memory information within dynamically-changing neural activity. This discovery may have far-reaching consequences in understanding how organisms have the ability to perform multiple mental operations simultaneously, such as remembering, paying attention and making a decision, using a brain of limited size. In the human brain, the frontal lobe plays an important role in processing short-term memories. Short-term memory has a low capacity to retain information. “It can usually only hold six to eight items. Think for example about our ability to remember a phone number for a few seconds – that uses short-term memory,” Libendisky explained.

Read More

Researchers Uncovered a New Mechanism of Neurodegeneration

Technology Networks | November 22, 2019

Charcot-Marie-Tooth disease (CMT) is an inherited neurodegenerative condition that affects 1 in 2500 individuals. Currently, however, it is still lacking effective treatment options. New research has demonstrated that a class of cytoplasmic enzymes called tRNA synthetases can cause CMT by interfering with the gene transcription in the nucleus. This breakthrough is the result of an international academic collaboration, where scientists from the VIB-UAntwerp Center for Molecular Neurology and the Scripps Research Institute were the driving force. The study was published in the leading journal Nature Communications. Charcot-Marie-Tooth disease (CMT) is a condition that affects the peripheral nervous system. It leads to progressive muscle weakness and loss of sensation in the lower and - later on - upper limbs. It is the most commonly inheritable neuromuscular disorder and, at the moment, remains incurable. The first symptoms can appear both in early childhood or during adult life. Over 90 genes are implicated in the pathology so far and these are involved in a variety of processes. This complexity makes it a difficult condition to study and find a treatment for.

Read More

Neurocrine Biosciences and Xenon Launch Up-to-$1.7B Epilepsy, Neuroscience Collaboration

GEN | December 02, 2019

Neurocrine Biosciences has agreed to exclusively license and co-develop Xenon Pharmaceuticals’ Phase I epilepsy candidate XEN901 as a treatment for children—as well as develop three preclinical compounds, the companies said today—through a collaboration that could generate up to $1.7 billion for Xenon. XEN901 is designed as a highly selective Nav1.6 sodium channel inhibitor being developed to treat children with SCN8A developmental and epileptic encephalopathy (SCN8A-DEE) and other potential indications, including adult focal epilepsy. Xenon has completed a Phase I trial of a powder-in-capsule formulation of XEN901 in healthy adults. However, Xenon has also developed a pediatric-specific, granule formulation of XEN901, and has completed juvenile toxicology studies intended to support pediatric development of the drug candidate. “With its proven expertise in developing and commercializing treatments for neurological disorders, we believe Neurocrine Biosciences is an ideal partner to maximize the potential value of XEN901 for patients,” Xenon CEO Simon Pimstone, MD, PhD, FRCPC, said in a statement.

Read More

Using Machine Learning To Reveal How the Brain Encodes Memories

Technology Networks | November 28, 2019

Researchers working in The N.1 Institute for Health at NUS, led by Assistant Professor Camilo Libedinsky from NUS Psychology, and Senior Lecturer Shih-Cheng Yen from the Innovation and Design Programme at NUS Engineering, have discovered that a population of neurons in the brain’s frontal lobe contain stable short-term memory information within dynamically-changing neural activity. This discovery may have far-reaching consequences in understanding how organisms have the ability to perform multiple mental operations simultaneously, such as remembering, paying attention and making a decision, using a brain of limited size. In the human brain, the frontal lobe plays an important role in processing short-term memories. Short-term memory has a low capacity to retain information. “It can usually only hold six to eight items. Think for example about our ability to remember a phone number for a few seconds – that uses short-term memory,” Libendisky explained.

Read More

Researchers Uncovered a New Mechanism of Neurodegeneration

Technology Networks | November 22, 2019

Charcot-Marie-Tooth disease (CMT) is an inherited neurodegenerative condition that affects 1 in 2500 individuals. Currently, however, it is still lacking effective treatment options. New research has demonstrated that a class of cytoplasmic enzymes called tRNA synthetases can cause CMT by interfering with the gene transcription in the nucleus. This breakthrough is the result of an international academic collaboration, where scientists from the VIB-UAntwerp Center for Molecular Neurology and the Scripps Research Institute were the driving force. The study was published in the leading journal Nature Communications. Charcot-Marie-Tooth disease (CMT) is a condition that affects the peripheral nervous system. It leads to progressive muscle weakness and loss of sensation in the lower and - later on - upper limbs. It is the most commonly inheritable neuromuscular disorder and, at the moment, remains incurable. The first symptoms can appear both in early childhood or during adult life. Over 90 genes are implicated in the pathology so far and these are involved in a variety of processes. This complexity makes it a difficult condition to study and find a treatment for.

Read More

Events