New Hope for Rare Mitochondrial Diseases

MARK TERRY | July 16, 2019 | 99 views

Mitochondria are the energy producers in the body. They are inherited from the mothers, and the mitochondria themselves contain their own DNA, which encode for 37 genes. The bulk of the 1500 mitochondrial proteins, however, are encoded by the nuclear DNA.

Spotlight

BioGenex

BioGenex designs, develops, and commercializes advanced fully-automated molecular pathology systems for cancer diagnosis, prognosis, personalized medicine, and life science research. The recent introduction of our eFISHency integrated workflow solution for FISH laboratories and miRNA system for characterization of cancer of unknown primary (CUP) and for undifferentiated tumors is a game changer that has no rival in the industry. Our fully automated molecular pathology work stations are the most advanced system globally. Our customer focused approach, with premier after sales support and excellent technical service, provides the best in class customer care. Our spirit of innovation drives us to deliver cutting edge technology, years ahead of our competition, and the finest systems for life science research and diagnostics.

OTHER ARTICLES
MEDTECH

Top 10 biotech IPOs in 2019

Article | July 12, 2022

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More
MEDTECH

Cell Out? Lysate-Based Expression an Option for Personalized Meds

Article | July 13, 2022

Cell-free expression (CFE) is the practice of making a protein without using a living cell. In contrast with cell line-based methods, production is achieved using a fluid containing biological components extracted from a cell, i.e., a lysate. CFE offers potential advantages for biopharma according to Philip Probert, PhD, a senior scientist at the Centre for Process Innovation in the U.K.

Read More
MEDTECH

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | July 20, 2022

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Selexis Cell Line Development Strategies

Article | February 11, 2020

In today’s biotechnology landscape, to be competitive, meet regulations, and achieve market demands, “we must apply Bioprocessing 4.0,” said Igor Fisch, PhD, CEO, Selexis. In fact, in the last decade, “Selexis has evolved from cloning by limiting dilution to automated cell selection to nanofluidic chips and from monoclonality assessment by statistical calculation to proprietary bioinformatic analysis,” he added. Single-use processing systems are an expanding part of the biomanufacturing world; as such, they are a major component of Bioprocessing 4.0. “At Selexis, we use single use throughout our cell line development workflow. Currently, we have incorporated single-use automated bioprocessing systems such as ambr® and the Beacon® optofluidic platform for accelerated cell line development. By using these systems and optimizing our parameters, we were able to achieve high titers in shake flasks. Additionally, the Beacon systems integrate miniaturized cell culture with high-throughput liquid handling automation and cell imaging. This allows us to control, adjust, and monitor programs at the same time,” noted Fisch.

Read More

Spotlight

BioGenex

BioGenex designs, develops, and commercializes advanced fully-automated molecular pathology systems for cancer diagnosis, prognosis, personalized medicine, and life science research. The recent introduction of our eFISHency integrated workflow solution for FISH laboratories and miRNA system for characterization of cancer of unknown primary (CUP) and for undifferentiated tumors is a game changer that has no rival in the industry. Our fully automated molecular pathology work stations are the most advanced system globally. Our customer focused approach, with premier after sales support and excellent technical service, provides the best in class customer care. Our spirit of innovation drives us to deliver cutting edge technology, years ahead of our competition, and the finest systems for life science research and diagnostics.

Related News

Structure of Mitochondrial ATP Synthase Is Solved

Technology Networks | November 19, 2019

Researchers Alexander Mühleip (Stockholm University) and Alexey Amunts (Stockholm University) solved the structure of a mitochondrial ATP synthase with native lipids. ATP synthase is a universal molecular machine for energy conversion. By coupling to cellular respiration in mitochondria, it catalyzes conversion of chemical energy of cells. Mitochondrial ATP synthase is composed of dimers that, when come together, form membrane curvature that is essential for efficient energy conversion. While the mitochondrial signature lipid cardiolipin and its interactions with proteins are believed to contribute to this process, it was not directly visualized before. In addition, it was unclear to what extent the ATP synthase has diverged across different species. Researcher Alexander Mühleip, from Amunts lab, used the single-cell photosynthetic organism Euglena gracilis, which belongs to a phylum that also includes human parasites, to extract the mitochondrial ATP synthase. Its structure was then determined using cryo-EM, allowing the reconstruction of the atomic model. The high resolution of the cryo-EM density map allowed identification of 29 different protein subunits and 25 cardiolipin molecules. Some of the cardiolipins appear to modulate the critical channel for proton transfer that fuels the machine, which is the first evidence for their direct involvement.

Read More

Structure of Mitochondrial ATP Synthase Is Solved

Technology Networks | November 19, 2019

Researchers Alexander Mühleip (Stockholm University) and Alexey Amunts (Stockholm University) solved the structure of a mitochondrial ATP synthase with native lipids. ATP synthase is a universal molecular machine for energy conversion. By coupling to cellular respiration in mitochondria, it catalyzes conversion of chemical energy of cells. Mitochondrial ATP synthase is composed of dimers that, when come together, form membrane curvature that is essential for efficient energy conversion. While the mitochondrial signature lipid cardiolipin and its interactions with proteins are believed to contribute to this process, it was not directly visualized before. In addition, it was unclear to what extent the ATP synthase has diverged across different species. Researcher Alexander Mühleip, from Amunts lab, used the single-cell photosynthetic organism Euglena gracilis, which belongs to a phylum that also includes human parasites, to extract the mitochondrial ATP synthase. Its structure was then determined using cryo-EM, allowing the reconstruction of the atomic model. The high resolution of the cryo-EM density map allowed identification of 29 different protein subunits and 25 cardiolipin molecules. Some of the cardiolipins appear to modulate the critical channel for proton transfer that fuels the machine, which is the first evidence for their direct involvement.

Read More

Events