New Hope for Rare Mitochondrial Diseases

Mitochondria are the energy producers in the body. They are inherited from the mothers, and the mitochondria themselves contain their own DNA, which encode for 37 genes. The bulk of the 1500 mitochondrial proteins, however, are encoded by the nuclear DNA.

Spotlight

Microbiologics, Inc.

Microbiologics is the world's leading provider of biological references materials for quality control testing. Our portfolio features over 800 microorganism strains which are available in more than 20 unique, easy-to-use configurations including live cultures, inactivated microorganisms, genomic DNA/RNA extracts, synthetic nucleic acid-based materials, and customized solutions. At Microbiologics, our mission is "To provide the highest quality biomaterials for a safer, healthier world."

OTHER ARTICLES
Medical

5 Biotech Stocks Winning the Coronavirus Race

Article | August 16, 2022

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More
MedTech

Next-Gen Gene Therapy to Counter Complex Diseases

Article | October 7, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
MedTech

Better Purification and Recovery in Bioprocessing

Article | July 12, 2022

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More
Diagnostics

Making Predictions by Digitizing Bioprocessing

Article | April 20, 2021

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More

Spotlight

Microbiologics, Inc.

Microbiologics is the world's leading provider of biological references materials for quality control testing. Our portfolio features over 800 microorganism strains which are available in more than 20 unique, easy-to-use configurations including live cultures, inactivated microorganisms, genomic DNA/RNA extracts, synthetic nucleic acid-based materials, and customized solutions. At Microbiologics, our mission is "To provide the highest quality biomaterials for a safer, healthier world."

Related News

Structure of Mitochondrial ATP Synthase Is Solved

Technology Networks | November 19, 2019

Researchers Alexander Mühleip (Stockholm University) and Alexey Amunts (Stockholm University) solved the structure of a mitochondrial ATP synthase with native lipids. ATP synthase is a universal molecular machine for energy conversion. By coupling to cellular respiration in mitochondria, it catalyzes conversion of chemical energy of cells. Mitochondrial ATP synthase is composed of dimers that, when come together, form membrane curvature that is essential for efficient energy conversion. While the mitochondrial signature lipid cardiolipin and its interactions with proteins are believed to contribute to this process, it was not directly visualized before. In addition, it was unclear to what extent the ATP synthase has diverged across different species. Researcher Alexander Mühleip, from Amunts lab, used the single-cell photosynthetic organism Euglena gracilis, which belongs to a phylum that also includes human parasites, to extract the mitochondrial ATP synthase. Its structure was then determined using cryo-EM, allowing the reconstruction of the atomic model. The high resolution of the cryo-EM density map allowed identification of 29 different protein subunits and 25 cardiolipin molecules. Some of the cardiolipins appear to modulate the critical channel for proton transfer that fuels the machine, which is the first evidence for their direct involvement.

Read More

Structure of Mitochondrial ATP Synthase Is Solved

Technology Networks | November 19, 2019

Researchers Alexander Mühleip (Stockholm University) and Alexey Amunts (Stockholm University) solved the structure of a mitochondrial ATP synthase with native lipids. ATP synthase is a universal molecular machine for energy conversion. By coupling to cellular respiration in mitochondria, it catalyzes conversion of chemical energy of cells. Mitochondrial ATP synthase is composed of dimers that, when come together, form membrane curvature that is essential for efficient energy conversion. While the mitochondrial signature lipid cardiolipin and its interactions with proteins are believed to contribute to this process, it was not directly visualized before. In addition, it was unclear to what extent the ATP synthase has diverged across different species. Researcher Alexander Mühleip, from Amunts lab, used the single-cell photosynthetic organism Euglena gracilis, which belongs to a phylum that also includes human parasites, to extract the mitochondrial ATP synthase. Its structure was then determined using cryo-EM, allowing the reconstruction of the atomic model. The high resolution of the cryo-EM density map allowed identification of 29 different protein subunits and 25 cardiolipin molecules. Some of the cardiolipins appear to modulate the critical channel for proton transfer that fuels the machine, which is the first evidence for their direct involvement.

Read More

Events