Merging With Machines: A Look at Emerging Neuroscience Technologies

HIROKI KOTABE | October 22, 2019 | 174 views

Billionaire entrepreneur and technophile Elon Musk is just one of the prominent futurists echoing the sentiment that we are on the verge of a full merger with machines. “It’s increasingly hard to tell where I end and where the computer begins,” states historian, professor, and New York Times bestselling author Yuval Noah Harari at his keynote address at the Fast Company European Innovation Festival. “In the future, it is likely that the smartphone will not be separated from you at all. It may be embedded in our body or brain, constantly scanning your biometric data and your emotions.”

Spotlight

Eton Bioscience, Inc.

Eton Bioscience Inc. is a biotech company specializing in DNA sequencing and oligo synthesis services nationwide. Founded in 2003 in San Diego, California, we have been providing scientists of both academia and industry with a variety of services and products to assist them in research.

OTHER ARTICLES
MedTech

Top 10 biotech IPOs in 2019

Article | October 7, 2022

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More
MedTech

Cell Out? Lysate-Based Expression an Option for Personalized Meds

Article | July 12, 2022

Cell-free expression (CFE) is the practice of making a protein without using a living cell. In contrast with cell line-based methods, production is achieved using a fluid containing biological components extracted from a cell, i.e., a lysate. CFE offers potential advantages for biopharma according to Philip Probert, PhD, a senior scientist at the Centre for Process Innovation in the U.K.

Read More
MedTech

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | July 11, 2022

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Selexis Cell Line Development Strategies

Article | February 11, 2020

In today’s biotechnology landscape, to be competitive, meet regulations, and achieve market demands, “we must apply Bioprocessing 4.0,” said Igor Fisch, PhD, CEO, Selexis. In fact, in the last decade, “Selexis has evolved from cloning by limiting dilution to automated cell selection to nanofluidic chips and from monoclonality assessment by statistical calculation to proprietary bioinformatic analysis,” he added. Single-use processing systems are an expanding part of the biomanufacturing world; as such, they are a major component of Bioprocessing 4.0. “At Selexis, we use single use throughout our cell line development workflow. Currently, we have incorporated single-use automated bioprocessing systems such as ambr® and the Beacon® optofluidic platform for accelerated cell line development. By using these systems and optimizing our parameters, we were able to achieve high titers in shake flasks. Additionally, the Beacon systems integrate miniaturized cell culture with high-throughput liquid handling automation and cell imaging. This allows us to control, adjust, and monitor programs at the same time,” noted Fisch.

Read More

Spotlight

Eton Bioscience, Inc.

Eton Bioscience Inc. is a biotech company specializing in DNA sequencing and oligo synthesis services nationwide. Founded in 2003 in San Diego, California, we have been providing scientists of both academia and industry with a variety of services and products to assist them in research.

Related News

Neurocrine Biosciences and Xenon Launch Up-to-$1.7B Epilepsy, Neuroscience Collaboration

GEN | December 02, 2019

Neurocrine Biosciences has agreed to exclusively license and co-develop Xenon Pharmaceuticals’ Phase I epilepsy candidate XEN901 as a treatment for children—as well as develop three preclinical compounds, the companies said today—through a collaboration that could generate up to $1.7 billion for Xenon. XEN901 is designed as a highly selective Nav1.6 sodium channel inhibitor being developed to treat children with SCN8A developmental and epileptic encephalopathy (SCN8A-DEE) and other potential indications, including adult focal epilepsy. Xenon has completed a Phase I trial of a powder-in-capsule formulation of XEN901 in healthy adults. However, Xenon has also developed a pediatric-specific, granule formulation of XEN901, and has completed juvenile toxicology studies intended to support pediatric development of the drug candidate. “With its proven expertise in developing and commercializing treatments for neurological disorders, we believe Neurocrine Biosciences is an ideal partner to maximize the potential value of XEN901 for patients,” Xenon CEO Simon Pimstone, MD, PhD, FRCPC, said in a statement.

Read More

Machine Learning Harnessed To Build Map of the Connectome

Technology Networks | November 08, 2019

The brain is considered to be one of the most complex systems in existence. And while significant headway has been made to understand it, we tend to generate more questions than answers. But now a research team led by Kyoto University has developed a machine learning model that allows scientists to reconstruct neuronal circuitry by measuring signals from the neurons themselves. The model has the potential to elucidate the difference in neuronal computation in different brain regions. To comprehend the brain, we must look at the neurons that construct it. Our entire world of perception runs across these billions of cells in our head. And that is compounded by the exponentially larger number of connections -- known as synapses -- between them, making the path to our understanding a challenge. Shigeru Shinomoto from Kyoto University's School of Science, who headed the project, explains that although it is possible to record the activity of individual neurons in the brain -- and that number has increased dramatically over the last decade -- it is still a challenge to map out how each of these cells connects to each other.

Read More

UK Scientists Speed up Brain Cancer Diagnosis with AI

Labiotech.eu | November 05, 2019

A technique combining a blood test with artificial intelligence (AI), developed by the UK company ClinSpec Diagnostics, could help to prioritize which patients need to be scanned for brain cancer. A team led by researchers at the University of Strathclyde and the University of Edinburgh, UK, trialed the technology on blood samples from 400 people suspected of having brain tumors. The researchers used an existing technique called infrared spectroscopy to screen 20,000 chemicals in their blood, and then used AI to identify the chemicals that signal a brain tumor. The test correctly identified 82% of the patients that would go on to be diagnosed with brain cancer. Patients flagged with this brain cancer test can be prioritized for confirmatory brain scans, and their diagnosis might take just two weeks. In current practice, it’s difficult to diagnose tumors from patients’ symptoms, and the process can take up to two months, with multiple visits to the doctor. The blood test is being developed by Brennan’s collaborator, the UK company ClinSpec Diagnostics. While other groups are working on cancer tests using infrared spectroscopy and AI, ClinSpec’s test is the most advanced, according to Brennan.

Read More

Neurocrine Biosciences and Xenon Launch Up-to-$1.7B Epilepsy, Neuroscience Collaboration

GEN | December 02, 2019

Neurocrine Biosciences has agreed to exclusively license and co-develop Xenon Pharmaceuticals’ Phase I epilepsy candidate XEN901 as a treatment for children—as well as develop three preclinical compounds, the companies said today—through a collaboration that could generate up to $1.7 billion for Xenon. XEN901 is designed as a highly selective Nav1.6 sodium channel inhibitor being developed to treat children with SCN8A developmental and epileptic encephalopathy (SCN8A-DEE) and other potential indications, including adult focal epilepsy. Xenon has completed a Phase I trial of a powder-in-capsule formulation of XEN901 in healthy adults. However, Xenon has also developed a pediatric-specific, granule formulation of XEN901, and has completed juvenile toxicology studies intended to support pediatric development of the drug candidate. “With its proven expertise in developing and commercializing treatments for neurological disorders, we believe Neurocrine Biosciences is an ideal partner to maximize the potential value of XEN901 for patients,” Xenon CEO Simon Pimstone, MD, PhD, FRCPC, said in a statement.

Read More

Machine Learning Harnessed To Build Map of the Connectome

Technology Networks | November 08, 2019

The brain is considered to be one of the most complex systems in existence. And while significant headway has been made to understand it, we tend to generate more questions than answers. But now a research team led by Kyoto University has developed a machine learning model that allows scientists to reconstruct neuronal circuitry by measuring signals from the neurons themselves. The model has the potential to elucidate the difference in neuronal computation in different brain regions. To comprehend the brain, we must look at the neurons that construct it. Our entire world of perception runs across these billions of cells in our head. And that is compounded by the exponentially larger number of connections -- known as synapses -- between them, making the path to our understanding a challenge. Shigeru Shinomoto from Kyoto University's School of Science, who headed the project, explains that although it is possible to record the activity of individual neurons in the brain -- and that number has increased dramatically over the last decade -- it is still a challenge to map out how each of these cells connects to each other.

Read More

UK Scientists Speed up Brain Cancer Diagnosis with AI

Labiotech.eu | November 05, 2019

A technique combining a blood test with artificial intelligence (AI), developed by the UK company ClinSpec Diagnostics, could help to prioritize which patients need to be scanned for brain cancer. A team led by researchers at the University of Strathclyde and the University of Edinburgh, UK, trialed the technology on blood samples from 400 people suspected of having brain tumors. The researchers used an existing technique called infrared spectroscopy to screen 20,000 chemicals in their blood, and then used AI to identify the chemicals that signal a brain tumor. The test correctly identified 82% of the patients that would go on to be diagnosed with brain cancer. Patients flagged with this brain cancer test can be prioritized for confirmatory brain scans, and their diagnosis might take just two weeks. In current practice, it’s difficult to diagnose tumors from patients’ symptoms, and the process can take up to two months, with multiple visits to the doctor. The blood test is being developed by Brennan’s collaborator, the UK company ClinSpec Diagnostics. While other groups are working on cancer tests using infrared spectroscopy and AI, ClinSpec’s test is the most advanced, according to Brennan.

Read More

Events