Light and Sound Brain Wave Stimulation Shows Pre-clinical Potential As Alzheimer’s Therapy

RUAIRI J MACKENZIE | October 25, 2019 | 22 views

Research presented at Neuroscience 2019, hosted in Chicago this week, has shown promising pre-clinical data in mice that suggests altering the electrical oscillations of neuronal networks with external light and sound stimulation might have brain-boosting effects that reduce pathology related to Alzheimer’s disease (AD). In a plenary talk, MIT Picower Institute for Learning and Memory Professor Li-Huei Tsai gave an overview of research which implicates aberrant brain rhythms as having a contributory role in the neurodegeneration that is a hallmark of AD pathology.

Spotlight

Swecure AB

Swecure is a Swedish biotechnology company developing pharmaceuticals for immunoregulatory disorders such as a preventive treatments for allergies and treatments for other chronic diseases. The company is working to reduce the prevalence of allergies and to improve the quality of life for mankind. Swecure is based out of research in bacteriology and immunology from Sahlgrenska University Hospital with 15 years of experience in infant gut bacterial flora.

OTHER ARTICLES
MEDICAL

Next-Gen Gene Therapy to Counter Complex Diseases

Article | July 14, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
MEDTECH

Expansion of BioPharma: Opportunities and Investments

Article | September 22, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
MEDTECH

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | July 5, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More
MEDTECH

Biotech in 2022

Article | July 11, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More

Spotlight

Swecure AB

Swecure is a Swedish biotechnology company developing pharmaceuticals for immunoregulatory disorders such as a preventive treatments for allergies and treatments for other chronic diseases. The company is working to reduce the prevalence of allergies and to improve the quality of life for mankind. Swecure is based out of research in bacteriology and immunology from Sahlgrenska University Hospital with 15 years of experience in infant gut bacterial flora.

Related News

The Deep Brain Origins of Alzheimer's Disease

Technology Networks | October 07, 2019

Long before symptoms like memory loss even emerge, the underlying pathology of Alzheimer's disease, such as an accumulation of amyloid protein plaques, is well underway in the brain. A longtime goal of the field has been to understand where it starts so that future interventions could begin there. A new study by MIT neuroscientists at The Picower Institute for Learning and Memory could help those efforts by pinpointing the regions with the earliest emergence of amyloid in the brain of a prominent mouse model of the disease. Notably, the study also shows that the degree of amyloid accumulation in one of those same regions of the human brain correlates strongly with the progression of the disease. "Alzheimer's is a neurodegenerative disease so in the end you can see a lot of neuron loss," said Wen-Chin "Brian" Huang, co-lead author of the study and a postdoc in the lab of co-senior author Li-Huei Tsai, Picower Professor of Neuroscience and director of the Picower Institute. "At that point it would be hard to cure the symptoms. It's really critical to understand what circuits and regions show neuronal dysfunction early in the disease. This will in turn facilitate the development of effective therapeutics."

Read More

Alzheimer’s Memory Loss Could Be Treated with Calcium Channel Blocker

GEN | September 12, 2019

A little extra calcium is a good thing, to help maintain healthy bones and muscles. However, too much calcium in your neurons could be an underlying cause of memory loss for those afflicted with Alzheimer’s disease (AD). Alzheimer’s is the most common cause of dementia, but the changes in brain cell function that mediate memory loss remain poorly understood. However now, researchers at the University of Bristol have identified that calcium channel blockers may be an effective way of treating memory loss. Findings from the new study—published recently in Frontiers in Cellular Neuroscience through an article titled “Restoration of Olfactory Memory in Drosophila Overexpressing Human Alzheimer’s Disease-Associated Tau by Manipulation of L-Type Ca2+ Channels”—found that treating a diseased brain cell with a blocker of the L-type channel reduced the number of calcium ions able to flow into the brain cell. “Memory loss in AD is highly distressing and a difficult to treat symptom. Targeting the early changes in brain cell function—before they begin to degenerate—may be effective in treating memory loss,” noted senior study investigator James Hodge, PhD, associate professor in neuroscience at the University of Bristol.

Read More

Biogen and Eisai’s previously bleak Alzheimer’s study comes back with positive results

Questex LLC | July 06, 2018

A phase 2 Alzheimer’s trial once nearly consigned to the heap of disappointing attempts against the disease has re-emerged with new positive results, showing that an anti-amyloid beta protofibril antibody can slow clinical symptom decline, as well as reduce the accumulation of plaque in the brain. Biogen and Eisai’s BAN2401 did not present promising results last December, with 12-month data failing to clear the bar compared to placebo. The companies had hoped their adaptive trial design, employing Bayesian statistics, would provide a faster and cheaper route to phase 3 development compared to traditional protocols.

Read More

The Deep Brain Origins of Alzheimer's Disease

Technology Networks | October 07, 2019

Long before symptoms like memory loss even emerge, the underlying pathology of Alzheimer's disease, such as an accumulation of amyloid protein plaques, is well underway in the brain. A longtime goal of the field has been to understand where it starts so that future interventions could begin there. A new study by MIT neuroscientists at The Picower Institute for Learning and Memory could help those efforts by pinpointing the regions with the earliest emergence of amyloid in the brain of a prominent mouse model of the disease. Notably, the study also shows that the degree of amyloid accumulation in one of those same regions of the human brain correlates strongly with the progression of the disease. "Alzheimer's is a neurodegenerative disease so in the end you can see a lot of neuron loss," said Wen-Chin "Brian" Huang, co-lead author of the study and a postdoc in the lab of co-senior author Li-Huei Tsai, Picower Professor of Neuroscience and director of the Picower Institute. "At that point it would be hard to cure the symptoms. It's really critical to understand what circuits and regions show neuronal dysfunction early in the disease. This will in turn facilitate the development of effective therapeutics."

Read More

Alzheimer’s Memory Loss Could Be Treated with Calcium Channel Blocker

GEN | September 12, 2019

A little extra calcium is a good thing, to help maintain healthy bones and muscles. However, too much calcium in your neurons could be an underlying cause of memory loss for those afflicted with Alzheimer’s disease (AD). Alzheimer’s is the most common cause of dementia, but the changes in brain cell function that mediate memory loss remain poorly understood. However now, researchers at the University of Bristol have identified that calcium channel blockers may be an effective way of treating memory loss. Findings from the new study—published recently in Frontiers in Cellular Neuroscience through an article titled “Restoration of Olfactory Memory in Drosophila Overexpressing Human Alzheimer’s Disease-Associated Tau by Manipulation of L-Type Ca2+ Channels”—found that treating a diseased brain cell with a blocker of the L-type channel reduced the number of calcium ions able to flow into the brain cell. “Memory loss in AD is highly distressing and a difficult to treat symptom. Targeting the early changes in brain cell function—before they begin to degenerate—may be effective in treating memory loss,” noted senior study investigator James Hodge, PhD, associate professor in neuroscience at the University of Bristol.

Read More

Biogen and Eisai’s previously bleak Alzheimer’s study comes back with positive results

Questex LLC | July 06, 2018

A phase 2 Alzheimer’s trial once nearly consigned to the heap of disappointing attempts against the disease has re-emerged with new positive results, showing that an anti-amyloid beta protofibril antibody can slow clinical symptom decline, as well as reduce the accumulation of plaque in the brain. Biogen and Eisai’s BAN2401 did not present promising results last December, with 12-month data failing to clear the bar compared to placebo. The companies had hoped their adaptive trial design, employing Bayesian statistics, would provide a faster and cheaper route to phase 3 development compared to traditional protocols.

Read More

Events