Light and Sound Brain Wave Stimulation Shows Pre-clinical Potential As Alzheimer’s Therapy

Research presented at Neuroscience 2019, hosted in Chicago this week, has shown promising pre-clinical data in mice that suggests altering the electrical oscillations of neuronal networks with external light and sound stimulation might have brain-boosting effects that reduce pathology related to Alzheimer’s disease (AD). In a plenary talk, MIT Picower Institute for Learning and Memory Professor Li-Huei Tsai gave an overview of research which implicates aberrant brain rhythms as having a contributory role in the neurodegeneration that is a hallmark of AD pathology.

Spotlight

AstridBio Technologies

Astridbio is a bioinformatics company focusing on research data-management systems and bioinformatics data-analysis for genomics research. We are an international company with offices in Hungary, Luxembourg, and Canada. Our core competencies in mathematics and Information Technology have enabled us to provide state-of-art bioinformatics services to academic research institutions, pharmaceutical and biotechnology companies that are seeking comprehensive IT solutions for identification of diagnostic markers and therapeutic targets which are the basis of rational drug research and development in the era of personalized medicine.

OTHER ARTICLES
MedTech

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | September 22, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More
MedTech

Immunology: A New Frontier in Medical Science

Article | October 7, 2022

Introduction Recent developments in the bioengineering of monoclonal antibodies (mAbs) have revolutionized the treatment of numerous rheumatic and immunological disorders. Currently, several immunological disorders are successfully being targeted and treated using innovative medical techniques such as immunotherapy. Leading companies are increasingly investing in research activities to expand the usage and application of immunology for the treatment of various infectious diseases, including multiple sclerosis, inflammatory bowel disorders, lupus, and psoriasis, leading companies are increasingly investing in research activities. Today, the efforts of researchers in immunology, with a long history of study and research, have borne fruit, as bioengineered mAbs are now being employed in clinical practices. Accelerating Investments: Paving the Way for Immunology The increasing prevalence of infectious diseases, cancer, and immune-mediated inflammatory disorders (IMIDs) is raising the need for more precise classification and an in-depth understanding of the pathology underlying these ailments. Numerous leaders in the biotechnology domain are thus focusing on undertaking numerous strategies, such as new facility launches and collaborations, to address the need by finding deeper inroads into immunology and its use in disease treatments. For instance, in 2022, the University of Texas MD Anderson Cancer Center announced the launch of a visionary research and innovation hub, the James P. Allison Institute, to find new roads in immunotherapy, develop new treatments, and foster groundbreaking science. These developments will result in better diagnosis through the use of selective biomarkers, and early detection of fatal diseases and their treatment, which will prevent complications from happening. Also, the identification of high-risk populations through a deeper understanding of genetic and environmental factors can assist in the prevention of disease through immunotherapy. The Way Forward Immunology has led to the development of biotechnology, making it possible to develop novel drugs and vaccines, as well as diagnostic tests, that can be used to prevent, diagnose, and treat a wide range of autoimmune, infectious, and cancerous diseases. With the rapid advancement in technology and the integration of artificial intelligence, immunology is finding its way into an array of domains and industries, encompassing several research areas including medicine, pharmaceuticals, agriculture, and space. Today, not only researchers but also leading biotech and pharmaceutical companies have recognized that conventional therapies with pharmaceutical and chemical products are being replaced by products derived from immunology. This is because they work well for health problems, are environmentally friendly, and are also emerging as a wealth-generating business in the medical field.

Read More
Research

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | July 11, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More
MedTech

Data Analytics: A Groundbreaking Technology in Biotech

Article | July 20, 2022

Biotechnology is a vast discipline of biology that employs diverse biological systems to create solutions that can significantly alter the ways in which they operate across various domains. That said, biotechnology is not a new notion. It has existed for millennia, with ancient civilizations using its earliest incarnations to cultivate crops and create alcoholic beverages. Today, the biotechnology industry has developed by leaps and bounds and has amassed a vast quantity of scientific data through study and research. Given the importance of data in the biotechnology business, it is not difficult to understand why biotech companies utilize data analytics. Modern data analytics tools have made it possible for researchers in the biotech industry to build predictive analytics models and gain knowledge about the most efficient approaches to accomplish their desired goals and objectives. Data analytics is increasingly being adopted by biotech businesses to better understand their industry and foresee any problems down the road. How is Data Analytics Revolutionizing Fields in Biotechnology? Today's business and scientific fields greatly benefit from data. Without the analysis of vast information libraries that provide new insights and enable new innovations, no industry can really advance. Being highly reliant on big data analytics, biotech is not an exception in this regard. With the tools and methods that help scientists systematize their findings and speed up their research for better and safer results, data analytics is making deeper inroads into the biotechnology industry. It is emerging as a crucial link between knowledge and information and is extensively being used for purposes other than just examining the information that is already available. The following are a few of the cutting-edge biotechnology applications of data analytics Genomics and Disease Treatment Pharmaceutical Drug Discovery Drug Recycling and Safety Agriculture and Agri-products Environmental Damage Mitigation Data Analytics Possibilities in Biotechnology With data analytics becoming an integral part of how biotech businesses operate, biotechnologists and related stakeholders need to understand its emergence and crucial role. Data analytics has opened new frontiers in the realm of biotechnology. Thanks to developments in data analytics, research and development activities that once took years may now be accomplished in a matter of months. Also, now scientists have access to biological, social, and environmental insights that can be exploited to create more effective and sustainable products. By understanding the importance of data-related tools and techniques applications, biotech companies are aiming to invest in the popularizing technology to stay updated in the fast-paced biotechnology industry.

Read More

Spotlight

AstridBio Technologies

Astridbio is a bioinformatics company focusing on research data-management systems and bioinformatics data-analysis for genomics research. We are an international company with offices in Hungary, Luxembourg, and Canada. Our core competencies in mathematics and Information Technology have enabled us to provide state-of-art bioinformatics services to academic research institutions, pharmaceutical and biotechnology companies that are seeking comprehensive IT solutions for identification of diagnostic markers and therapeutic targets which are the basis of rational drug research and development in the era of personalized medicine.

Related News

The Deep Brain Origins of Alzheimer's Disease

Technology Networks | October 07, 2019

Long before symptoms like memory loss even emerge, the underlying pathology of Alzheimer's disease, such as an accumulation of amyloid protein plaques, is well underway in the brain. A longtime goal of the field has been to understand where it starts so that future interventions could begin there. A new study by MIT neuroscientists at The Picower Institute for Learning and Memory could help those efforts by pinpointing the regions with the earliest emergence of amyloid in the brain of a prominent mouse model of the disease. Notably, the study also shows that the degree of amyloid accumulation in one of those same regions of the human brain correlates strongly with the progression of the disease. "Alzheimer's is a neurodegenerative disease so in the end you can see a lot of neuron loss," said Wen-Chin "Brian" Huang, co-lead author of the study and a postdoc in the lab of co-senior author Li-Huei Tsai, Picower Professor of Neuroscience and director of the Picower Institute. "At that point it would be hard to cure the symptoms. It's really critical to understand what circuits and regions show neuronal dysfunction early in the disease. This will in turn facilitate the development of effective therapeutics."

Read More

Alzheimer’s Memory Loss Could Be Treated with Calcium Channel Blocker

GEN | September 12, 2019

A little extra calcium is a good thing, to help maintain healthy bones and muscles. However, too much calcium in your neurons could be an underlying cause of memory loss for those afflicted with Alzheimer’s disease (AD). Alzheimer’s is the most common cause of dementia, but the changes in brain cell function that mediate memory loss remain poorly understood. However now, researchers at the University of Bristol have identified that calcium channel blockers may be an effective way of treating memory loss. Findings from the new study—published recently in Frontiers in Cellular Neuroscience through an article titled “Restoration of Olfactory Memory in Drosophila Overexpressing Human Alzheimer’s Disease-Associated Tau by Manipulation of L-Type Ca2+ Channels”—found that treating a diseased brain cell with a blocker of the L-type channel reduced the number of calcium ions able to flow into the brain cell. “Memory loss in AD is highly distressing and a difficult to treat symptom. Targeting the early changes in brain cell function—before they begin to degenerate—may be effective in treating memory loss,” noted senior study investigator James Hodge, PhD, associate professor in neuroscience at the University of Bristol.

Read More

Biogen and Eisai’s previously bleak Alzheimer’s study comes back with positive results

Questex LLC | July 06, 2018

A phase 2 Alzheimer’s trial once nearly consigned to the heap of disappointing attempts against the disease has re-emerged with new positive results, showing that an anti-amyloid beta protofibril antibody can slow clinical symptom decline, as well as reduce the accumulation of plaque in the brain. Biogen and Eisai’s BAN2401 did not present promising results last December, with 12-month data failing to clear the bar compared to placebo. The companies had hoped their adaptive trial design, employing Bayesian statistics, would provide a faster and cheaper route to phase 3 development compared to traditional protocols.

Read More

The Deep Brain Origins of Alzheimer's Disease

Technology Networks | October 07, 2019

Long before symptoms like memory loss even emerge, the underlying pathology of Alzheimer's disease, such as an accumulation of amyloid protein plaques, is well underway in the brain. A longtime goal of the field has been to understand where it starts so that future interventions could begin there. A new study by MIT neuroscientists at The Picower Institute for Learning and Memory could help those efforts by pinpointing the regions with the earliest emergence of amyloid in the brain of a prominent mouse model of the disease. Notably, the study also shows that the degree of amyloid accumulation in one of those same regions of the human brain correlates strongly with the progression of the disease. "Alzheimer's is a neurodegenerative disease so in the end you can see a lot of neuron loss," said Wen-Chin "Brian" Huang, co-lead author of the study and a postdoc in the lab of co-senior author Li-Huei Tsai, Picower Professor of Neuroscience and director of the Picower Institute. "At that point it would be hard to cure the symptoms. It's really critical to understand what circuits and regions show neuronal dysfunction early in the disease. This will in turn facilitate the development of effective therapeutics."

Read More

Alzheimer’s Memory Loss Could Be Treated with Calcium Channel Blocker

GEN | September 12, 2019

A little extra calcium is a good thing, to help maintain healthy bones and muscles. However, too much calcium in your neurons could be an underlying cause of memory loss for those afflicted with Alzheimer’s disease (AD). Alzheimer’s is the most common cause of dementia, but the changes in brain cell function that mediate memory loss remain poorly understood. However now, researchers at the University of Bristol have identified that calcium channel blockers may be an effective way of treating memory loss. Findings from the new study—published recently in Frontiers in Cellular Neuroscience through an article titled “Restoration of Olfactory Memory in Drosophila Overexpressing Human Alzheimer’s Disease-Associated Tau by Manipulation of L-Type Ca2+ Channels”—found that treating a diseased brain cell with a blocker of the L-type channel reduced the number of calcium ions able to flow into the brain cell. “Memory loss in AD is highly distressing and a difficult to treat symptom. Targeting the early changes in brain cell function—before they begin to degenerate—may be effective in treating memory loss,” noted senior study investigator James Hodge, PhD, associate professor in neuroscience at the University of Bristol.

Read More

Biogen and Eisai’s previously bleak Alzheimer’s study comes back with positive results

Questex LLC | July 06, 2018

A phase 2 Alzheimer’s trial once nearly consigned to the heap of disappointing attempts against the disease has re-emerged with new positive results, showing that an anti-amyloid beta protofibril antibody can slow clinical symptom decline, as well as reduce the accumulation of plaque in the brain. Biogen and Eisai’s BAN2401 did not present promising results last December, with 12-month data failing to clear the bar compared to placebo. The companies had hoped their adaptive trial design, employing Bayesian statistics, would provide a faster and cheaper route to phase 3 development compared to traditional protocols.

Read More

Events