Length matters? DNA testing companies claim to assess stress, health and aging by measuring your telomeres

Over the past few years direct-to-consumer genetic tests that extract information from DNA in your chromosomes have become popular. Through a simple cheek swab, saliva collection or finger prick, companies offer the possibility of learning more about your family tree, ancestry, or risk of developing diseases such as Alzheimer’s or even certain cancers. More recently, some companies offer tests to measure the tips of chromosomes, called telomeres, to learn more about aging. But what exactly are telomeres, what are telomere tests, and what are companies claiming they can tell you? Age based on your birthday versus your “telomere age”?

Spotlight

Medinfi Healthcare

Medinfi is a digital health content platform offering health & wellness blogs to 2+ million users who spend more than 4 minutes per page on average, thereby making Medinfi one of the most engaged content platforms globally. Medinfi was declared the winner of Red Herring Award for Global Top 100 & Asia 100 2016.

OTHER ARTICLES
Medical

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | August 16, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More
MedTech

Making Predictions by Digitizing Bioprocessing

Article | October 7, 2022

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More
Medical

Top 3 Biotech Clinical Data Management Trends to Watch in 2022

Article | July 14, 2022

Introduction The administration of medical records and data has advanced significantly during the past few decades. Clinical data management, which was once only a small subset of biotech research organizations, has now developed into a mission-critical, specialized unit. In the late 1990s, electronic data capture (EDC) began to alter the traditional function of clinical data management. After that, the data configuration and management of data queries for the EDC system fell under the purview of clinical data management services. Today, clinical data management is not only responsible for managing the clinical data configuration and data queries but also developing and implementing data administration plans, ensuring data accuracy and completeness, and maintaining optimum data security. In recent years, as digital technologies have gained acceptance around the globe, data has become a vital aspect in decision-making across numerous industries, and the life sciences and biotechnology sectors are no exception. Using data has provided granular insights to biotech organizations, assisting them in creating breakthroughs in drug development and medical research and signifying the importance of clinical trial management systems in these medical verticals. The Biggest Biotech Clinical Data Management Trends to Know About Today The future of clinical data management is contingent upon the implementation of systems and regulations. It is imperative for all organizations participating in a medical or life science trial to have transparent rules in place for sharing and retaining patient data. Also, there is a need to have a standardized format for maintaining these records and documents related to trials. This assists biotech organizations in reducing the chances of ambiguity regarding who owns what kind of data or paperwork at any given time. Over the past couple of years, the focus of the life science and biotechnology industries has shifted towards developing more effective medications and therapies, implementing personalized treatment, and finding cures for diseases such as cancer and AIDS. In response to this, a substantial rise in the number of clinical trials is being witnessed globally. As the number of clinical trials continues to accelerate, the spending on these trials rises as well. In response to this, the worldwide cost of conducting clinical trials is anticipated to reach US$ 49.80 billion in 2022. With the transition of the world from traditional to digital, medical professionals and biotech businesses are increasingly shifting towards adopting high-tech and reliable clinical trial management systems for various applications, starting from diagnosis and clinical trials to patient data documentation. But, what are the future trends in biotechnology clinical data management? Let’s discuss. Cloud-Based Clinical Metadata Repositories Automation is emerging as a new frontier in the biotech clinical data management domain, along with other innovative technologies such as artificial intelligence and machine learning. Because of this, life science establishments are witnessing a huge shift from paper-based documentation toward data-based documentation, which is creating mountains of research, compliance, and clinical data. The growing demand for new and more effective medications and drugs is augmenting the need to expedite clinical trials. This is resulting in an increased number of initiatives aimed at optimizing clinical trial processes to prepare and launch successful trials. However, pharmaceutical and biotechnology laboratories are encountering several challenges in collecting, managing, and analyzing metadata due to its complexities. So, what is the best solution to this problem? The answer to this is cloud-based clinical metadata repositories. Clinical research facilities are leveraging advanced, all-in-one, cloud-based clinical metadata repositories to assist them in centralizing and managing metadata; increasing metadata quality, consistency, and accuracy; and speeding up clinical trial management, documentation, and compliance processes. Shift Towards Digital Solutions Electronic Case Report Form Adequate research and accurate data are crucial for a clinical trial to succeed. Whether developing new drugs, medication, or therapies; conducting life science research; or studying the latest clinical trial systems, it is best to use electronic solutions as it reduces the room for mistakes during the transition of clinical data from paper-based format. Realizing this, biotech organizations are shifting towards using electronic case report forms to speed up record retrieval, improve record security, and cut down on operational costs associated with running clinical trials. The electronic case report form assists in lowering the failure rate of the clinical trial, enhancing efficiency, and optimizing security along with improving clinical trial documentation and productivity, further driving its adoption in the medical space. Electronic Clinical Outcome Assessment Electronic clinical outcome assessment is surfacing as one of the fast-growing future trends in biotechnology. It allows clinical trial facilities to automate data entry and improve the reliability of the collected information. The technology enables clinical trial institutions to automatically record patient-provided information about side effects, symptoms, drug timing, and other aspects during the clinical trial for increased precision. It also helps these institutions analyze the results of medication or therapy in clinical trials and lets clinical researchers use medical technologies like biosensor-enabled devices, self-service applications, and medical wearables for evaluation. Hence, biotech clinical facilities are increasingly deploying advanced electronic clinical outcome assessment systems to ensure adherence to protocols and regulations. Clinical Trial Customization The success of a new drug is determined by numerous factors other than its effectiveness, safety, and creativity of its developers, such as a successful clinical trial. Each clinical trial involves a number of decision-making points, and one wrong choice in any of these aspects can jeopardize the success of the entire endeavor. A crucial component of making well-informed decisions is data management, which is a part of clinical study as a whole. Clinical trial customization is emerging as one of the most prominent biotech clinical trial management trends. Every clinical trial is unique and needs a tailored approach to be successful. With the emergence of the trend of personalized treatment around the globe, biotech and pharmaceutical organizations are adopting innovative customized clinical trial management solutions to accelerate the pace of clinical trials and approvals. This is giving clinical researchers innovative ways to come up with new medicines for patients and streamline the clinical data as per the requirements for faster approvals. What Are the Key Clinical Data Management Challenges Faced by Biotech Companies? Groundbreaking medical interventions are of no use without reliable, accurate, and extensive clinical trial data. Without the data, biotech and pharmaceutical companies will not be able to provide the assurance of safety and efficacy required to bring the medication to market. Regulatory bodies such as the Food and Drug Administration (FDA), the Medicines and Healthcare Products Regulatory Agency (MHRA), and others are putting stricter rules in place to ensure the quality of clinical data. In addition, the fast-changing clinical development environment is creating more obstacles for biotech and medical spaces to ensure the accuracy, standard, and completeness of the clinical trial data. Hence, clinical teams are spending valuable time cleaning up data instead of analyzing it. Time spent trying to figure out issues with clinical trial data is detrimental and expensive but also mission-critical. This is because a small issue in the data can lead to numerous consequences, from small delays to calamitous setbacks, making it necessary to rerun clinical trials. This problem will only get more challenging to address as the volume of data and the types of data sources continue to grow. Here are some of the major clinical data management challenges that biotech firms encounter Standardization of Clinical Metadata Stringent Regulatory Compliance Increased Clinical Trial Complexity Mid-Study Changes Why Are Clinical Data Management Systems Garnering Popularity in the Biotech Industry? With the changing regulatory and clinical landscape, biotech and pharmaceutical companies are facing several obstacles in the management of clinical data and clinical trials. In addition, regulatory agencies are moving toward integrated electronic systems, which is making it more and more important for clinical laboratories to change the format of their submissions. Because of this, several biotech clinical labs are focusing on adopting innovative laboratory solutions, such as biotech clinical data management systems, to meet the need for standardized data inputs and replace all manual ways of working with electronic systems. A clinical data management system establishes the framework for error-free data collection and high-quality data submission, resulting in speedier drug discovery and shorter time-to-market. These solutions are gaining huge traction among biotech and pharmaceutical companies, owing to their ability to effectively manage clinical data, accelerate clinical trials, and ensure compliance. Let’s see some of the features of biotech clinical data management software that are most sought after by life-science companies Controlled, standardized data repository. Centralized data analysis and administration. Reduced operational expenditures for clinical data processes. Enhanced process effectiveness. Superior submission quality Compliance with predefined standards. Clinical Data Management Systems: The Future The role of clinical data management systems is evolving at a rapid pace as the life science and medical industries continue to incorporate digital solutions for diverse operations. These systems are being used in a variety of biotech clinical settings, ranging from clinical data compliance to data science and analytics, to help them analyze large and growing volumes of clinical data. Hence, a number of high-tech medical companies are aiming at integrating innovative technologies, such as artificial intelligence and machine learning, into clinical data management software to automate clinical data management tasks, improve clinical data submission, and enhance data quality. These new biotech clinical management technologies are anticipated to help life science laboratories gain a better understanding of diseases and speed up clinical trials in the coming years. FAQ What is a clinical data management system? A clinical data management system (CDMS) is a tool used in clinical research to track, record, and manage clinical trial data across medical establishments such as biotech laboratories. What are the key functions of the biotech clinical data management system? Some of the key functions of biotech clinical data management system are Documentation of Protocols and Regulations Patient Recruitment Real-time Clinical Study Analytics Reporting Investigator Relationship Management Electronic Visit Report Why is a clinical data management system needed for clinical trials today? A clinical data management system helps shorten the time from drug development to marketing by assisting in the collection of high-quality, statistically sound, and accurate data from clinical trials.

Read More
MedTech

Next-Gen Gene Therapy to Counter Complex Diseases

Article | July 13, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More

Spotlight

Medinfi Healthcare

Medinfi is a digital health content platform offering health & wellness blogs to 2+ million users who spend more than 4 minutes per page on average, thereby making Medinfi one of the most engaged content platforms globally. Medinfi was declared the winner of Red Herring Award for Global Top 100 & Asia 100 2016.

Related News

AI, Diagnostics

Genomic Vision Announces launch of FiberSmart

Genomic Vision | March 08, 2023

On March 7, 2023, Genomic Vision, a leading biotech company that develops products and services for the analysis and control of genome changes, launched FiberSmart®, an AI-based technology for automating the quantification and detection of fluorescent signals on combed DNA molecules. Initially available for the analysis of Replication Combing Assays (RCA), Genomic Vision's proprietary method for directly visualizing DNA replication kinetics at the single molecule level. FiberSmart uses advanced AI methods to detect, visualize, and analyze DNA replication kinetics up to 3x more accurately and up to 10x faster than Genomic Vision's existing software solutions. The technology offers a simple and user-friendly interface, facilitating quick analysis of DNA replication signals to deduce essential parameters describing replication kinetics. It is compatible with Genomic Vision's FiberVision® and FiberVision-S® scanners for the RCA assay of the company's proprietary DNA combing technology with various potential applications, including in gene and cell therapy quality control. FiberSmart has been successfully tested and validated by AstraZeneca and the Fritz Lipmann Institute in Germany. Genomic Vision's CEO Aaron Bensimon said, "The launch of FiberSmart® is an important milestone for Genomic Vision as we bring the benefits of powerful AI technology to our users, who can now perform faster and more accurate genomic analysis seamlessly. Our proprietary DNA combing technique has multiple potential applications, particularly in the cell and gene therapy space, where highly accurate genomic analysis is paramount to ensure robust quality standards are met. With the launch of this software we are making it easier for users to exploit the full potential of our proprietary advanced genomic analysis technique." (Source – Business Wire) About Genomic Vision GENOMIC VISION is a leading biotechnology company specializing in the analysis of genome modifications, with a focus on ensuring their quality and safety in genome editing technologies and biomanufacturing processes. It utilizes advanced nanotechnology for DNA analysis to develop cutting-edge diagnostic and drug discovery solutions for cancer and acute diseases at the intersection of genome dynamics and human diseases. The company's approach employs Molecular Combing Technology, a powerful technique that directly visualizes single DNA molecules to detect and quantify changes in the genome landscape and their contribution to pathology.

Read More

Medical

Spotlight Therapeutics Raises $36.5 Million Series B to Advance a Pipeline of Cell-Targeted In Vivo CRISPR Gene Editing Biologics

Spotlight Therapeutics | March 22, 2022

Spotlight Therapeutics, Inc. (“Spotlight”), a biotechnology company applying new insights to develop cell-targeted in vivo CRISPR gene editing biologics, today announced a $36.5M Series B financing to fuel a drive toward the clinic. The financing round was co-led by new investors GordonMD Global Investments and EPIQ Capital Group, with participation from Magnetic Ventures, as well as existing investors GV (formerly Google Ventures) and Emerson Collective and other investors. Craig Gordon, M.D., Founder, CEO and CIO of GordonMD Global Investments, joins the Company’s Board of Directors. Spotlight's proprietary technology platform, TAGE (Targeted Active Gene Editors), is a new class of biologics; highly engineered, modular programmable CRISPR effectors designed to target and edit selected cell types in vivo. This approach circumvents the complexity of packaged viral, viral-like, and nanoparticle delivery systems, opens the door to expanded applications, and holds the promise of increasing patient access. We are excited to help Spotlight advance its pioneering work, which shows promise for cell-targeted delivery of CRISPR effectors in vivo. Spotlight’s TAGE platform could enable significant expansion of CRISPR medicines to a wide range of diseases." Dr. Gordon. This Series B funding is a crucial milestone as we advance our lead first-in-class immuno-oncology (IO) program and progress our pipeline of programs in IO, ophthalmic diseases and hemoglobinopathies,It will enable us to execute our development plan, leveraging Spotlight’s unique cell-targeted in vivo delivery approach, as we aspire to unlock the full potential of gene editing and enable effective one-and-done medicines for patients.” Mary Haak-Frendscho, Ph.D., President and CEO of Spotlight Therapeutics. About Spotlight Therapeutics Established in mid-2018, Spotlight Therapeutics is a privately held biotechnology company advancing a pipeline of cell-targeted in vivo CRISPR gene editing therapies. Spotlight's proprietary technology platform TAGE (Targeted Active Gene Editors) is a new class of biologics, CRISPR effectors engineered for direct delivery in vivo, to achieve cell-selective therapeutic genome editing. Spotlight's pipeline is advancing its modular programmable CRISPR effectors towards clinical studies in immuno-oncology, ophthalmic diseases and hemoglobinopathies. The company is headquartered in Hayward, California.

Read More

Medical

TGen Selects MemVerge to Accelerate Idiopathic Pulmonary Fibrosis Research Discovery with Big Memory Technology

MemVerge | March 21, 2022

MemVerge™, the pioneers of Big Memory software, today announced that TGen, the Translational Genomics Research Institute, an affiliate of City of Hope, has selected MemVerge Memory Machine Big Memory virtualization software to accelerate time to discovery for Idiopathic Pulmonary Fibrosis (IPF), a disease which affects 100,000 people annually in the U.S. Using MemVerge technology, TGen is able to dramatically speed analytical processing by nearly 36% for single-cell RNA sequencing. As a nonprofit medical research institute, TGen researchers process single-cell RNA sequences to characterize cell transcriptomic profiles. The process can take up to six and a half hours to analyze a matrix of 30,000 genes by 114,000 cells. With consistently growing datasets, this processing time was preventing a desired time to discovery. The data required for analysis was simply too large to retain in traditional memory, and scaling capacity with dynamic random-access memory (DRAM) was too costly. TGen has instead deployed memory virtualization technology from MemVerge which virtualizes both DRAM and PMem (persistent memory) memory technologies, to increase the memory pool available for processing without requiring more high-cost DRAM. The solution further speeds TGen's genomics sequencing analysis with Memory Machine ZeroIO in-memory snapshots which capture multi-terabyte data sets at any point for rapid reloads at each stage of processing. The ZeroIO snapshot service is 1,000 times faster than the fastest storage snapshot to SSD and enables TGen to run processing workflows in parallel. This ensures that in the event of a system crash, in-memory snapshots are available to instantly re-start long running jobs without lengthy reloading. By utilizing the snapshotting and cloning capabilities of Memory Machine, we were able to parallelize the processing workflow, As a result, we can now save nearly 36% of computational time while also taking advantage of the big memory nodes. This will save a lot of time in downstream analysis." Glen Otero, Ph.D., Vice President of Scientific Computing at TGen. MemVerge Memory Machine has quickly resulted in research value for TGen, We have removed performance barriers from their research process so that they are able to perform vital, life-saving, research faster than ever possible. Now TGen is expanding the use of Big Memory technology across other research use cases where results and discoveries can produce findings for a healthier tomorrow." Jonathan Jiang, COO of MemVerge. MemVerge Memory Machine makes 100% use of available memory capacity while providing new operational capabilities to memory-centric workloads. Memory Machine answers the need for a modern in-memory computing model to support emerging applications that require real-time analytics, true in-memory computing, and fault-tolerant memory persistence to speed massive processing workloads. About MemVerge MemVerge is pioneering Big Memory Computing and Big Memory Cloud technology for the memory-centric and multi-cloud future. MemVerge® Memory Machine™ is the industry's first software to virtualize memory hardware for fine-grained provisioning of capacity, performance, availability, and mobility. On top of the transparent memory service, Memory Machine provides another industry first, ZeroIO™ in-memory snapshots which can encapsulate terabytes of application state within seconds and enable data management at the speed of memory. The breakthrough capabilities of Big Memory Computing and Big Memory Cloud Technology are opening the door to cloud agility and flexibility for thousands of Big Memory applications.

Read More

AI, Diagnostics

Genomic Vision Announces launch of FiberSmart

Genomic Vision | March 08, 2023

On March 7, 2023, Genomic Vision, a leading biotech company that develops products and services for the analysis and control of genome changes, launched FiberSmart®, an AI-based technology for automating the quantification and detection of fluorescent signals on combed DNA molecules. Initially available for the analysis of Replication Combing Assays (RCA), Genomic Vision's proprietary method for directly visualizing DNA replication kinetics at the single molecule level. FiberSmart uses advanced AI methods to detect, visualize, and analyze DNA replication kinetics up to 3x more accurately and up to 10x faster than Genomic Vision's existing software solutions. The technology offers a simple and user-friendly interface, facilitating quick analysis of DNA replication signals to deduce essential parameters describing replication kinetics. It is compatible with Genomic Vision's FiberVision® and FiberVision-S® scanners for the RCA assay of the company's proprietary DNA combing technology with various potential applications, including in gene and cell therapy quality control. FiberSmart has been successfully tested and validated by AstraZeneca and the Fritz Lipmann Institute in Germany. Genomic Vision's CEO Aaron Bensimon said, "The launch of FiberSmart® is an important milestone for Genomic Vision as we bring the benefits of powerful AI technology to our users, who can now perform faster and more accurate genomic analysis seamlessly. Our proprietary DNA combing technique has multiple potential applications, particularly in the cell and gene therapy space, where highly accurate genomic analysis is paramount to ensure robust quality standards are met. With the launch of this software we are making it easier for users to exploit the full potential of our proprietary advanced genomic analysis technique." (Source – Business Wire) About Genomic Vision GENOMIC VISION is a leading biotechnology company specializing in the analysis of genome modifications, with a focus on ensuring their quality and safety in genome editing technologies and biomanufacturing processes. It utilizes advanced nanotechnology for DNA analysis to develop cutting-edge diagnostic and drug discovery solutions for cancer and acute diseases at the intersection of genome dynamics and human diseases. The company's approach employs Molecular Combing Technology, a powerful technique that directly visualizes single DNA molecules to detect and quantify changes in the genome landscape and their contribution to pathology.

Read More

Medical

Spotlight Therapeutics Raises $36.5 Million Series B to Advance a Pipeline of Cell-Targeted In Vivo CRISPR Gene Editing Biologics

Spotlight Therapeutics | March 22, 2022

Spotlight Therapeutics, Inc. (“Spotlight”), a biotechnology company applying new insights to develop cell-targeted in vivo CRISPR gene editing biologics, today announced a $36.5M Series B financing to fuel a drive toward the clinic. The financing round was co-led by new investors GordonMD Global Investments and EPIQ Capital Group, with participation from Magnetic Ventures, as well as existing investors GV (formerly Google Ventures) and Emerson Collective and other investors. Craig Gordon, M.D., Founder, CEO and CIO of GordonMD Global Investments, joins the Company’s Board of Directors. Spotlight's proprietary technology platform, TAGE (Targeted Active Gene Editors), is a new class of biologics; highly engineered, modular programmable CRISPR effectors designed to target and edit selected cell types in vivo. This approach circumvents the complexity of packaged viral, viral-like, and nanoparticle delivery systems, opens the door to expanded applications, and holds the promise of increasing patient access. We are excited to help Spotlight advance its pioneering work, which shows promise for cell-targeted delivery of CRISPR effectors in vivo. Spotlight’s TAGE platform could enable significant expansion of CRISPR medicines to a wide range of diseases." Dr. Gordon. This Series B funding is a crucial milestone as we advance our lead first-in-class immuno-oncology (IO) program and progress our pipeline of programs in IO, ophthalmic diseases and hemoglobinopathies,It will enable us to execute our development plan, leveraging Spotlight’s unique cell-targeted in vivo delivery approach, as we aspire to unlock the full potential of gene editing and enable effective one-and-done medicines for patients.” Mary Haak-Frendscho, Ph.D., President and CEO of Spotlight Therapeutics. About Spotlight Therapeutics Established in mid-2018, Spotlight Therapeutics is a privately held biotechnology company advancing a pipeline of cell-targeted in vivo CRISPR gene editing therapies. Spotlight's proprietary technology platform TAGE (Targeted Active Gene Editors) is a new class of biologics, CRISPR effectors engineered for direct delivery in vivo, to achieve cell-selective therapeutic genome editing. Spotlight's pipeline is advancing its modular programmable CRISPR effectors towards clinical studies in immuno-oncology, ophthalmic diseases and hemoglobinopathies. The company is headquartered in Hayward, California.

Read More

Medical

TGen Selects MemVerge to Accelerate Idiopathic Pulmonary Fibrosis Research Discovery with Big Memory Technology

MemVerge | March 21, 2022

MemVerge™, the pioneers of Big Memory software, today announced that TGen, the Translational Genomics Research Institute, an affiliate of City of Hope, has selected MemVerge Memory Machine Big Memory virtualization software to accelerate time to discovery for Idiopathic Pulmonary Fibrosis (IPF), a disease which affects 100,000 people annually in the U.S. Using MemVerge technology, TGen is able to dramatically speed analytical processing by nearly 36% for single-cell RNA sequencing. As a nonprofit medical research institute, TGen researchers process single-cell RNA sequences to characterize cell transcriptomic profiles. The process can take up to six and a half hours to analyze a matrix of 30,000 genes by 114,000 cells. With consistently growing datasets, this processing time was preventing a desired time to discovery. The data required for analysis was simply too large to retain in traditional memory, and scaling capacity with dynamic random-access memory (DRAM) was too costly. TGen has instead deployed memory virtualization technology from MemVerge which virtualizes both DRAM and PMem (persistent memory) memory technologies, to increase the memory pool available for processing without requiring more high-cost DRAM. The solution further speeds TGen's genomics sequencing analysis with Memory Machine ZeroIO in-memory snapshots which capture multi-terabyte data sets at any point for rapid reloads at each stage of processing. The ZeroIO snapshot service is 1,000 times faster than the fastest storage snapshot to SSD and enables TGen to run processing workflows in parallel. This ensures that in the event of a system crash, in-memory snapshots are available to instantly re-start long running jobs without lengthy reloading. By utilizing the snapshotting and cloning capabilities of Memory Machine, we were able to parallelize the processing workflow, As a result, we can now save nearly 36% of computational time while also taking advantage of the big memory nodes. This will save a lot of time in downstream analysis." Glen Otero, Ph.D., Vice President of Scientific Computing at TGen. MemVerge Memory Machine has quickly resulted in research value for TGen, We have removed performance barriers from their research process so that they are able to perform vital, life-saving, research faster than ever possible. Now TGen is expanding the use of Big Memory technology across other research use cases where results and discoveries can produce findings for a healthier tomorrow." Jonathan Jiang, COO of MemVerge. MemVerge Memory Machine makes 100% use of available memory capacity while providing new operational capabilities to memory-centric workloads. Memory Machine answers the need for a modern in-memory computing model to support emerging applications that require real-time analytics, true in-memory computing, and fault-tolerant memory persistence to speed massive processing workloads. About MemVerge MemVerge is pioneering Big Memory Computing and Big Memory Cloud technology for the memory-centric and multi-cloud future. MemVerge® Memory Machine™ is the industry's first software to virtualize memory hardware for fine-grained provisioning of capacity, performance, availability, and mobility. On top of the transparent memory service, Memory Machine provides another industry first, ZeroIO™ in-memory snapshots which can encapsulate terabytes of application state within seconds and enable data management at the speed of memory. The breakthrough capabilities of Big Memory Computing and Big Memory Cloud Technology are opening the door to cloud agility and flexibility for thousands of Big Memory applications.

Read More

Events