Kronos Bio Snags $105 Million to Support Development of its Small Molecule Microarray Platform

ALEX KEOWN | July 18, 2019 | 56 views

A little more than a year after it launched, California-based Kronos Bio closed a $105 million Series A Preferred Stock financing to support the continued development of the company’s Small Molecule Microarray platform (SMM).

Spotlight

Turbine.AI

Turbine models how cancer works on the molecular level and tests millions of potential drugs on it with artificial intelligence.Turbine’s in silico experiments can test an almost infinite number of interventions on a Simulated Cell that reflects the molecular diversity of cancer cells accurately.

OTHER ARTICLES
MEDICAL

Top 10 biotech IPOs in 2019

Article | August 16, 2022

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More
MEDICAL

Cell Out? Lysate-Based Expression an Option for Personalized Meds

Article | July 14, 2022

Cell-free expression (CFE) is the practice of making a protein without using a living cell. In contrast with cell line-based methods, production is achieved using a fluid containing biological components extracted from a cell, i.e., a lysate. CFE offers potential advantages for biopharma according to Philip Probert, PhD, a senior scientist at the Centre for Process Innovation in the U.K.

Read More
MEDTECH

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | July 16, 2022

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Selexis Cell Line Development Strategies

Article | February 11, 2020

In today’s biotechnology landscape, to be competitive, meet regulations, and achieve market demands, “we must apply Bioprocessing 4.0,” said Igor Fisch, PhD, CEO, Selexis. In fact, in the last decade, “Selexis has evolved from cloning by limiting dilution to automated cell selection to nanofluidic chips and from monoclonality assessment by statistical calculation to proprietary bioinformatic analysis,” he added. Single-use processing systems are an expanding part of the biomanufacturing world; as such, they are a major component of Bioprocessing 4.0. “At Selexis, we use single use throughout our cell line development workflow. Currently, we have incorporated single-use automated bioprocessing systems such as ambr® and the Beacon® optofluidic platform for accelerated cell line development. By using these systems and optimizing our parameters, we were able to achieve high titers in shake flasks. Additionally, the Beacon systems integrate miniaturized cell culture with high-throughput liquid handling automation and cell imaging. This allows us to control, adjust, and monitor programs at the same time,” noted Fisch.

Read More

Spotlight

Turbine.AI

Turbine models how cancer works on the molecular level and tests millions of potential drugs on it with artificial intelligence.Turbine’s in silico experiments can test an almost infinite number of interventions on a Simulated Cell that reflects the molecular diversity of cancer cells accurately.

Related News

DNA origami joins forces with molecular motors to build nanoscale machines

Scopeofbiotechnology | July 18, 2019

For decades, researchers have chased ways to study biological machines. Every mechanical movement from contracting a muscle to replicating DNA relies on molecular motors that take near undetectable steps. Trying to see them move is like trying to watch a soccer game taking place on the moon. Now, with DNA origami helicopters, researchers have captured the first recorded rotational steps of a molecular motor as it moved from one DNA base pair to another. Every year, robots get more and more life like. Solar-powered bees fly on lithe wings, humanoids stick backflips, and teams of soccer bots strategize how to dribble, pass, and score. And, the more researchers discover about how living creatures move, the more machines can imitate them all the way down to their smallest molecules. “We have these amazing machines already in our bodies, and they work so well,” said Pallav Kosuri. “We just don’t know exactly how they work.” For decades, researchers have chased ways to study how biological machines power living things. Every mechanical movement — from contracting a muscle to replicating DNA — relies on molecular motors that take tiny, near-undetectable steps. Trying to see them move is like trying to watch a soccer game taking place on the moon.

Read More

Preclinical Study: Probiotic-Derived Molecule May Suppress Fatal Brain Inflammation

bioengineer | May 14, 2019

The existence of certain microorganisms in your gut may bolster the immune system’s ability to fend off a herpes viral attack that can cause fatal brain inflammation, reports a new City of Hope-led study. Researchers say the findings are the first to suggest that an envelope molecule from a bacterium called Bacteroides fragilis (B. fragilis) might be useful against viral inflammatory diseases. Called capsular polysaccharide A (PSA), the envelope molecule appears to promote protective, anti-inflammatory responses during a viral infection, said Ramakrishna Chandran, Ph.D., and Edouard Cantin, Ph.D., authors of the study and virology and immunology experts at City of Hope. “This mouse study shows that B. fragilis PSA can temper the immune system so that infection does not result in an uncontrolled, potentially fatal inflammatory response in the brain,” Cantin said. “Although herpes simplex encephalitis is a rare brain inflammation disorder, the lessons we learned here might, with more research, be applicable to other viral infections such as other herpesviruses, influenza virus, West Nile virus and maybe even viral respiratory diseases – conditions where inflammation begins to jeopardize the health of your body and brain function.” Herpes simplex encephalitis affects about 2,000 people in the United States each year and has a high mortality rate if symptoms are not recognized and patients aren’t treated promptly; survivors usually have serious neurological conditions. About 70% of untreated individuals die, according to multiple scientific reports.

Read More

DNA origami joins forces with molecular motors to build nanoscale machines

Scopeofbiotechnology | July 18, 2019

For decades, researchers have chased ways to study biological machines. Every mechanical movement from contracting a muscle to replicating DNA relies on molecular motors that take near undetectable steps. Trying to see them move is like trying to watch a soccer game taking place on the moon. Now, with DNA origami helicopters, researchers have captured the first recorded rotational steps of a molecular motor as it moved from one DNA base pair to another. Every year, robots get more and more life like. Solar-powered bees fly on lithe wings, humanoids stick backflips, and teams of soccer bots strategize how to dribble, pass, and score. And, the more researchers discover about how living creatures move, the more machines can imitate them all the way down to their smallest molecules. “We have these amazing machines already in our bodies, and they work so well,” said Pallav Kosuri. “We just don’t know exactly how they work.” For decades, researchers have chased ways to study how biological machines power living things. Every mechanical movement — from contracting a muscle to replicating DNA — relies on molecular motors that take tiny, near-undetectable steps. Trying to see them move is like trying to watch a soccer game taking place on the moon.

Read More

Preclinical Study: Probiotic-Derived Molecule May Suppress Fatal Brain Inflammation

bioengineer | May 14, 2019

The existence of certain microorganisms in your gut may bolster the immune system’s ability to fend off a herpes viral attack that can cause fatal brain inflammation, reports a new City of Hope-led study. Researchers say the findings are the first to suggest that an envelope molecule from a bacterium called Bacteroides fragilis (B. fragilis) might be useful against viral inflammatory diseases. Called capsular polysaccharide A (PSA), the envelope molecule appears to promote protective, anti-inflammatory responses during a viral infection, said Ramakrishna Chandran, Ph.D., and Edouard Cantin, Ph.D., authors of the study and virology and immunology experts at City of Hope. “This mouse study shows that B. fragilis PSA can temper the immune system so that infection does not result in an uncontrolled, potentially fatal inflammatory response in the brain,” Cantin said. “Although herpes simplex encephalitis is a rare brain inflammation disorder, the lessons we learned here might, with more research, be applicable to other viral infections such as other herpesviruses, influenza virus, West Nile virus and maybe even viral respiratory diseases – conditions where inflammation begins to jeopardize the health of your body and brain function.” Herpes simplex encephalitis affects about 2,000 people in the United States each year and has a high mortality rate if symptoms are not recognized and patients aren’t treated promptly; survivors usually have serious neurological conditions. About 70% of untreated individuals die, according to multiple scientific reports.

Read More

Events