Kizoo Announces Support for N-LIfT Cancer Immunotherapy

Kizoo, part of the Forever Healthy Foundation, has announced today that it will be supporting biotech company LIfT Biosciences, a company that focuses on creating a new generation of cancer therapies that use our own immune systems.

Spotlight

Biosceptre International Limited

Biosceptre takes a new approach to precision targeting of P2X7 in cancer, by exploiting a novel variant - "non functional" P2X7 - which has been shown to have a critical role in the survival of many cancer cell types.

OTHER ARTICLES
MedTech

Nanostructures: Emerging as Effective Carriers for Drug Delivery

Article | July 20, 2022

Natural remedies have been employed in medicine since antiquity. However, a large number of them fail to go past the clinical trial stages. In vivo instability, poor solubility and bioavailability, a lack of target-specific delivery, poor absorption, and side effects of the medication are only a few of the problems caused by the use of large-sized materials in drug administration. Therefore, adopting novel drug delivery systems with targeted medications may be a solution to address these pressing problems. Nanotechnology has received tremendous attention in recent years and has been demonstrated to help blur the boundaries between the biological and physical sciences. With great success, it plays a vital part in enhanced medication formulations, targeted venues, and controlled drug release and delivery. Limitations of Traditional Delivery Trigger the Adoption of Nanoparticles The field of nanotechnology and the creation of drug formulations based on nanoparticles is one that is expanding and showcasing great potential. It has been thoroughly researched in an effort to develop new methods of diagnosis and treatment and to overcome the limitations of several diseases' current therapies. As a result, nanoparticles are being used to improve the therapeutic effectiveness and boost patient adherence to treatment by increasing medication bioavailability, drug accumulation at a particular spot, and reducing drug adverse effects. The nanoparticles could be transformed into intelligent systems housing therapeutic and imaging agents by manipulating their surface properties, size, correct drug load, and release with targeted drug delivery. Nanostructures facilitate the release of combination medications at the prescribed dose since they remain in the blood circulation system for a long time. Therefore, they result in fewer plasma fluctuations with decreased side effects. Due to their nanoscale, these structures can easily enter the tissue system, promote the absorption of drugs by cells, make medication administration more effective, and ensure that the medicine acts at the targeted location. The Way Ahead Nanomedicine and nano-delivery systems are a comparatively new but fast-evolving science in which nanoscale materials are used as diagnostic tools to deliver drug molecules at precisely targeted sites in a controlled manner. It is finding applications for the treatment of diseases such as cardiovascular, neurodegenerative, cancer, ocular, AIDS, and diabetes, among others. With more research and technological advancement, these drug delivery solutions will open up huge opportunities for companies that work with them.

Read More
MedTech

Expansion of BioPharma: Opportunities and Investments

Article | October 7, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
MedTech

Better Purification and Recovery in Bioprocessing

Article | July 16, 2022

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More

Wisconsin biotech companies could play key roles in long-term economic recovery from COVID-19 pandemic

Article | April 19, 2020

Whether it’s called a modern “Manhattan Project” or a medical moon shot, the concept of long-term economic recovery rests on how confident people are they won’t risk serious illness by venturing forth in public again. Wisconsin stands to be a significant part of such an undertaking, whatever it’s called. The shorter-term debate is well under way over the gradual lifting of COVID-19 emergency rules, such as the now-extended “safer-at-home” order in Wisconsin. At least a dozen states, including regional coalitions on the East and West coasts, are exploring next steps as they seek to balance responses to the virus with calls for reopening the economy, at least, in part. Wisconsin’s ability to shape longer-term responses will come from private and public resources, which range from companies engaged in production of diagnostics.

Read More

Spotlight

Biosceptre International Limited

Biosceptre takes a new approach to precision targeting of P2X7 in cancer, by exploiting a novel variant - "non functional" P2X7 - which has been shown to have a critical role in the survival of many cancer cell types.

Related News

Is Immunotherapy Working? Just Ask AI

Technology Networks | November 25, 2019

Scientists from the Case Western Reserve University digital imaging lab, already pioneering the use of Artificial Intelligence (AI) to predict whether chemotherapy will be successful, can now determine which lung-cancer patients will benefit from expensive immunotherapy. And, once again, they’re doing it by teaching a computer to find previously unseen changes in patterns in CT scans taken when the lung cancer is first diagnosed compared to scans taken after the first 2-3 cycles of immunotherapy treatment. And, as with previous work, those changes have been discovered both inside—and outside—the tumor, a signature of the lab’s recent research. “This is no flash in the pan—this research really seems to be reflecting something about the very biology of the disease, about which is the more aggressive phenotype, and that’s information oncologists do not currently have,” said Anant Madabhushi, whose Center for Computational Imaging and Personalized Diagnostics (CCIPD) researches the detection, diagnosis and characterization of various cancers and other diseases by meshing medical imaging, machine learning and AI. Currently, only about 20% of all cancer patients will actually benefit from immunotherapy, a treatment that differs from chemotherapy in that it uses drugs to help your immune system fight cancer, while chemotherapy uses drugs to directly kill cancer cells, according to the National Cancer Institute.

Read More

Personalized Immunotherapy Refined by Mass Spec-Machine Learning Pairing

Technology Networks | October 16, 2019

Ludwig Cancer Research scientists have developed a new and more accurate method to identify the molecular signs of cancer likely to be presented to helper T cells, which stimulate and orchestrate the immune response to tumors and infectious agents. The study, led by David Gfeller and Michal Bassani-Sternberg of the Lausanne Branch of the Ludwig Institute for Cancer Research, is reported in the current issue of Nature Biotechnology. The new method combines two powerful new technologies. One is a mass spectrometry technology developed by Bassani-Sternberg’s lab to rapidly and inexpensively obtain the amino acid sequences of thousands of peptide antigens—or protein fragments—bound to a molecular complex known as HLA that is expressed on the surface of cells. The other is a novel computational tool developed in Gfeller’s lab that is based on machine learning, the computational approach that powers face-recognition software, among other things. “This method advances our effort to find good targets for cancer immunotherapy,” says Bassani-Sternberg. “But it is not only important for vaccines and other immunotherapies. It is also a tool we will be using for basic science, to better understand the interaction of cancers with the immune system.”

Read More

Zacks Podcast Highlights: Immunotherapy Stocks 101: What Biotech Investors Need to Know Now

Amgen | December 28, 2016

In this edition of the Dutram Report , Eric Dutram talks with Brad Loncar, the CEO of Loncar Investments. Brad specializes in the world of immunotherapy, a technique that is revolutionizing the cancer treatment market by harnessing the power of someone's immune system to fight disease. We get to the bottom of this emerging technology in the podcast so that investors can better understand why this market may deserve a closer look in 2017.

Read More

Is Immunotherapy Working? Just Ask AI

Technology Networks | November 25, 2019

Scientists from the Case Western Reserve University digital imaging lab, already pioneering the use of Artificial Intelligence (AI) to predict whether chemotherapy will be successful, can now determine which lung-cancer patients will benefit from expensive immunotherapy. And, once again, they’re doing it by teaching a computer to find previously unseen changes in patterns in CT scans taken when the lung cancer is first diagnosed compared to scans taken after the first 2-3 cycles of immunotherapy treatment. And, as with previous work, those changes have been discovered both inside—and outside—the tumor, a signature of the lab’s recent research. “This is no flash in the pan—this research really seems to be reflecting something about the very biology of the disease, about which is the more aggressive phenotype, and that’s information oncologists do not currently have,” said Anant Madabhushi, whose Center for Computational Imaging and Personalized Diagnostics (CCIPD) researches the detection, diagnosis and characterization of various cancers and other diseases by meshing medical imaging, machine learning and AI. Currently, only about 20% of all cancer patients will actually benefit from immunotherapy, a treatment that differs from chemotherapy in that it uses drugs to help your immune system fight cancer, while chemotherapy uses drugs to directly kill cancer cells, according to the National Cancer Institute.

Read More

Personalized Immunotherapy Refined by Mass Spec-Machine Learning Pairing

Technology Networks | October 16, 2019

Ludwig Cancer Research scientists have developed a new and more accurate method to identify the molecular signs of cancer likely to be presented to helper T cells, which stimulate and orchestrate the immune response to tumors and infectious agents. The study, led by David Gfeller and Michal Bassani-Sternberg of the Lausanne Branch of the Ludwig Institute for Cancer Research, is reported in the current issue of Nature Biotechnology. The new method combines two powerful new technologies. One is a mass spectrometry technology developed by Bassani-Sternberg’s lab to rapidly and inexpensively obtain the amino acid sequences of thousands of peptide antigens—or protein fragments—bound to a molecular complex known as HLA that is expressed on the surface of cells. The other is a novel computational tool developed in Gfeller’s lab that is based on machine learning, the computational approach that powers face-recognition software, among other things. “This method advances our effort to find good targets for cancer immunotherapy,” says Bassani-Sternberg. “But it is not only important for vaccines and other immunotherapies. It is also a tool we will be using for basic science, to better understand the interaction of cancers with the immune system.”

Read More

Zacks Podcast Highlights: Immunotherapy Stocks 101: What Biotech Investors Need to Know Now

Amgen | December 28, 2016

In this edition of the Dutram Report , Eric Dutram talks with Brad Loncar, the CEO of Loncar Investments. Brad specializes in the world of immunotherapy, a technique that is revolutionizing the cancer treatment market by harnessing the power of someone's immune system to fight disease. We get to the bottom of this emerging technology in the podcast so that investors can better understand why this market may deserve a closer look in 2017.

Read More

Events