IMViC tests

The Enterobacteriaceae is a family of non-spore-forming Gram-negative bacilli. They are widely distributed in soil, water and plants. The bacteria belonging to this family are normally present in the gastrointestinal tract of humans and animals and are among the most significant pathogens. The family includes some important genera like Escherichia, Enterobacter, Klebsiella, Salmonella, Shigella, Citrobacter and Yersinia.

Spotlight

Silence Therapeutics plc

Silence Therapeutics is a leading RNA therapeutics company. Its technology can selectively silence or replace the expression of any gene in the genome, modulating expression up as well as down in a variety of organs and cell types, in vivo. This allows the development of therapeutics for diseases with high unmet clinical need.

OTHER ARTICLES
Medical

Wisconsin biotech companies could play key roles in long-term economic recovery from COVID-19 pandemic

Article | July 14, 2022

Whether it’s called a modern “Manhattan Project” or a medical moon shot, the concept of long-term economic recovery rests on how confident people are they won’t risk serious illness by venturing forth in public again. Wisconsin stands to be a significant part of such an undertaking, whatever it’s called. The shorter-term debate is well under way over the gradual lifting of COVID-19 emergency rules, such as the now-extended “safer-at-home” order in Wisconsin. At least a dozen states, including regional coalitions on the East and West coasts, are exploring next steps as they seek to balance responses to the virus with calls for reopening the economy, at least, in part. Wisconsin’s ability to shape longer-term responses will come from private and public resources, which range from companies engaged in production of diagnostics.

Read More
MedTech

How to Choose a Reliable Biotech Clinical Trial Management System?

Article | July 11, 2022

Introduction The medical and life-science industries are experiencing a robust transformation with the increasing prevalence of various types of diseases, including infectious diseases, chronic disorders, and acute conditions around the world. As a result, a significant rise in demand for more effective therapeutic drugs and bionics is being witnessed, leading to a swift increase in the number of clinical trials. For a successful trial, it is important for biotech companies to ensure the data submitted to regulatory bodies regarding clinical trials is accurate, reliable, and definitive from an ethical point of view. A reliable clinical trial management system plays a vital role in collecting, monitoring, and managing clinical data. The availability of high-quality clinical data also helps clinical research institutions make efficient treatment decisions and provide proper patient care. Hence, a number of biotech companies and research organizations are focusing on leveraging innovative clinical trial management solutions to handle a large amount of data, particularly in multi-center trials, and generate reliable, high-quality, and statistically sound data from clinical trials. However, selecting the most appropriate and reliable clinical trial management system is vital for the clinical trial's success. Let's see some of the steps that will assist these firms in choosing the right CTMS. Key Steps for Selecting Right Biotech Clinical Trial Management System Prioritize Study Needs Considering and prioritizing study needs is a crucial step in choosing the most reliable clinical trial management system for biotech companies. Prioritizing helps them to identify a solution that improves the study's quality and removes uncertainty for researchers when faced with difficult choices. Hence, biotech and life-science organizations should choose a clinical trial system that is simple to use, well-organized, and suitably designed to minimize the number of clicks required to complete a task. Select CTMS with Multiple Integrations Integrated clinical trial management systems provide the best value for the companies’ funds as they guarantee the smooth functioning of research protocols. In addition, integrations are necessary to fully understand the importance and advantages of clinical trial management software for ensuring smooth transitions between site management and data collection. Biotech and clinical research should look for CTMS platforms that can integrate with electronic medical record (EMR) platforms and clinical research process content (CRPC) billing grids. This will allow them to use the same billing designations and ensure compliance while minimizing the need for duplicate processes. Ensure System Compliance and Security Clinical research organizations need to adhere to a plethora of complex regulations in order to ensure compliance with one of the most challenging environments of principles, which is information security and privacy. Security and system compliance are vital aspects of choosing the right CTMS solutions for biotech firms as they assist in building trust and form a part of the system’s duties. While selecting CTMS systems, it is essential for companies engaged in clinical research to ensure that these platforms are able to configure both, group and individual permissions, along with having a data backup and recovery plan for hosted systems. This will allow companies to assess the privacy and security implications of research and anticipate complications that may arise in each phase of the project. Assess the Scalability Choosing a scalable CTMS that can accommodate various types of fluctuations and expansions enables biotech and clinical firms to quickly adapt to fast-changing trends and demand spikes while reducing maintenance costs and enhancing user agility. As scalability also means secure and expanded data storage, these businesses should instead use SaaS solutions than manually manage an ever-growing collection of hard drives. The right CTMS ensures accommodating the firm’s availability requirements without incurring the capital costs associated with expanding a physical infrastructure. The Closing Thought A well-executed and successful clinical trial involves multiple stages and processes. Several quality controls and stringent adherence to regulations are essential for the steps, along with efficient cross-departmental processes and procedures. Incorporating the right CTMS paves the way for paperless data collection, regulatory filing, and fiscal management tools for biotech researchers and administrative personnel.

Read More
MedTech

Expansion of BioPharma: Opportunities and Investments

Article | July 13, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
Industrial Impact

AI and Biotechnology: The Future of Healthcare Industry

Article | January 20, 2021

Artificial intelligence has grasped the foundation in biotech. It can have the most innovative impact on biotechnology. AI has already established its presence in our day-to-day life. AI has made the existence of self-driving cars possible. Likewise, the benefits and quality that it can contribute to biotech can also be felt. With AI, bio technicians will be able to enhance virtual screening, overlook preliminary datasets from clinics, and decipher an enormous amount of information. It can also help in improving the medication process by gathering and analyzing every bit of information. The Significance of AI in Biotechnology In the past few years, the application of artificial intelligence in the biotechnology industry has shifted from being sci-fi to sci-fact. A vast number of biotech companies like Deep Genomics are adopting AI for making data-driven decisions and use analytics tools to work efficiently. Unlike the AI robots in sci-fi that are ready to take over the world. AI designed for biotech has been designed to solve certain problems or complete a bunch of tasks by using automated algorithms. The aim of AI technology for biotech is to collect insights along with hidden patterns from large amounts of data. All the different industries of biotech including agriculture, animal, medical, industrial, and bioinformatics are gradually being affected by artificial intelligence. Moreover, the biotech industry is realizing that AI enables them some of the important strength to their business, including: Expanding accessibility Cost-effectiveness Critical predictions Efficient decision-making Research centers like PwC have also estimated output of $15.7 trillion by 2030 solely with AI contribution in industries. A survey revealed that about 44% of life science experts are using AI for R&D activities, as well. Use of AI in Biotechnology Altering Biomedical and Clinical Data So far the most developed use of AI is its ability to read voluminous data records and interpret them. It can prove to be a life-save for bio technicians who would have to examine that much data from research publications by themselves for the validation of their hypothesis. With the help of AI, clinical studies of patients will also become easier as all the examination reports and prescriptions will be stored in one place for cross-reference. Furthermore, it will also help in blending and fetching data into usable formats for analysis. Test Result Prediction Through trial and error, AI along with machine learning can help in predicting the response of the patient to certain drugs to provide more effective outcomes. Drug Design & Discovery AI plays a vital role whether it’s designing a new molecule or identifying new biological targets. It helps in identifying and validating drugs. It reduces the cost and time spent on the entire drug trial process and reaches the market. Personalized Medications for Rare Diseases With the combination of body scan results, patients’ body and analytics, AI can also help in detecting dangerous diseases at an early stage. Improving Process of Manufacturing To improve the process of manufacturing in biotechnology, AI offers a wide range of opportunities. It controls quality, reduces wastage, improves useability, and minimizes the designing time. Moving Towards AI-Enhanced Biotech Future Ever since the concept of artificial intelligence has arrived, being curious by nature, humans have started working towards achieving this goal. It has been growing at a fast pace while showing unbelievable growth and achievements at times. In comparison to the traditional methods used in the biotechnology industry, AI-based methods seem more reliable and accurate. In the upcoming years, it will show its success by improving the quality of health people have. You can also develop your AI-based application or know more about it by taking IT consultations.

Read More

Spotlight

Silence Therapeutics plc

Silence Therapeutics is a leading RNA therapeutics company. Its technology can selectively silence or replace the expression of any gene in the genome, modulating expression up as well as down in a variety of organs and cell types, in vivo. This allows the development of therapeutics for diseases with high unmet clinical need.

Related News

Novel peptide could lead to antibiotic for drug-resistant bacteria

Drug Target Review | November 22, 2019

An international team of researchers has discovered a novel peptide that attacks gram negative bacteria at a previously unknown site of action. Germs such as Escherichia coli and Klebsiella pneumoniae have become resistant to the most – and in some cases all – currently available antibiotics. Their additional external membrane makes these difficult to attack as it protects the bacteria by preventing many substances from getting into the cell interior. Especially for the treatment of diseases caused by these so-called gram negative bacteria, there is a lack of new active substances. “Since the 1960s, scientists have not succeeded in developing a new class of antibiotics effective against gram negative bacteria, but this could now be possible with the help of this peptide,” said Professor Till Schäberle from the Institute of Insect Biotechnology at Justus Liebig University Giessen (JLU) and project leader at the DZIF, whose research group was involved in the discovery.

Read More

Gut Bacteria May Impact Aging

Technology Networks | November 19, 2019

An international research team led by Nanyang Technological University, Singapore (NTU Singapore) has found that microorganisms living in the gut may alter the ageing process, which could lead to the development of food-based treatment to slow it down. All living organisms, including human beings, coexist with a myriad of microbial species living in and on them, and research conducted over the last 20 years has established their important role in nutrition, physiology, metabolism and behaviour. Using mice, the team led by Professor Sven Pettersson from the NTU Lee Kong Chian School of Medicine, transplanted gut microbes from old mice (24 months old) into young, germ-free mice (6 weeks old). After eight weeks, the young mice had increased intestinal growth and production of neurons in the brain, known as neurogenesis. The team showed that the increased neurogenesis was due to an enrichment of gut microbes that produce a specific short chain fatty acid, called butyrate. Butyrate is produced through microbial fermentation of dietary fibres in the lower intestinal tract and stimulates production of a pro-longevity hormone called FGF21, which plays an important role in regulating the body’s energy and metabolism. As we age, butyrate production is reduced.

Read More

Having a Certain Type of Bacteria in Your Guts May Increase Risk of Developing Bowel Cancer

Technology Networks | November 04, 2019

In the first study to use a technique called Mendelian randomization to investigate the causal role played by bacteria in the development of bowel cancer, Dr Kaitlin Wade, from the University of Bristol, told the 2019 NCRI Cancer Conference: “We found evidence that the presence of an unclassified type of bacteria from a bacterial group called Bacteroidales increased the risk of bowel cancer by between 2-15%. “This means that, on average, people with this type of bacteria within their gut may have a slightly higher risk of bowel cancer compared to those who don’t. We were able to use Mendelian randomization to understand the causal role that these bacteria may have on the disease. Our findings support previous studies that have shown that Bacteroidales bacteria are more likely to be present, and in larger quantities, in individuals with bowel cancer compared to those without the disease.” The microbiome is a community of microorganisms, bacteria in this case, that occur naturally in the body. There is increasing evidence that the make-up of the microbiome plays a role in the human health and the body’s susceptibility to disease. The human gut microbiome, which contains approximately three trillion bacteria, aids digestion and provides protection against infections. It is determined by a person’s individual genetic makeup and their environment, so is unique to each person. It also remains relatively stable across a person’s life, unless it is affected by antibiotics, an illness or a change of diet, among other things.

Read More

Novel peptide could lead to antibiotic for drug-resistant bacteria

Drug Target Review | November 22, 2019

An international team of researchers has discovered a novel peptide that attacks gram negative bacteria at a previously unknown site of action. Germs such as Escherichia coli and Klebsiella pneumoniae have become resistant to the most – and in some cases all – currently available antibiotics. Their additional external membrane makes these difficult to attack as it protects the bacteria by preventing many substances from getting into the cell interior. Especially for the treatment of diseases caused by these so-called gram negative bacteria, there is a lack of new active substances. “Since the 1960s, scientists have not succeeded in developing a new class of antibiotics effective against gram negative bacteria, but this could now be possible with the help of this peptide,” said Professor Till Schäberle from the Institute of Insect Biotechnology at Justus Liebig University Giessen (JLU) and project leader at the DZIF, whose research group was involved in the discovery.

Read More

Gut Bacteria May Impact Aging

Technology Networks | November 19, 2019

An international research team led by Nanyang Technological University, Singapore (NTU Singapore) has found that microorganisms living in the gut may alter the ageing process, which could lead to the development of food-based treatment to slow it down. All living organisms, including human beings, coexist with a myriad of microbial species living in and on them, and research conducted over the last 20 years has established their important role in nutrition, physiology, metabolism and behaviour. Using mice, the team led by Professor Sven Pettersson from the NTU Lee Kong Chian School of Medicine, transplanted gut microbes from old mice (24 months old) into young, germ-free mice (6 weeks old). After eight weeks, the young mice had increased intestinal growth and production of neurons in the brain, known as neurogenesis. The team showed that the increased neurogenesis was due to an enrichment of gut microbes that produce a specific short chain fatty acid, called butyrate. Butyrate is produced through microbial fermentation of dietary fibres in the lower intestinal tract and stimulates production of a pro-longevity hormone called FGF21, which plays an important role in regulating the body’s energy and metabolism. As we age, butyrate production is reduced.

Read More

Having a Certain Type of Bacteria in Your Guts May Increase Risk of Developing Bowel Cancer

Technology Networks | November 04, 2019

In the first study to use a technique called Mendelian randomization to investigate the causal role played by bacteria in the development of bowel cancer, Dr Kaitlin Wade, from the University of Bristol, told the 2019 NCRI Cancer Conference: “We found evidence that the presence of an unclassified type of bacteria from a bacterial group called Bacteroidales increased the risk of bowel cancer by between 2-15%. “This means that, on average, people with this type of bacteria within their gut may have a slightly higher risk of bowel cancer compared to those who don’t. We were able to use Mendelian randomization to understand the causal role that these bacteria may have on the disease. Our findings support previous studies that have shown that Bacteroidales bacteria are more likely to be present, and in larger quantities, in individuals with bowel cancer compared to those without the disease.” The microbiome is a community of microorganisms, bacteria in this case, that occur naturally in the body. There is increasing evidence that the make-up of the microbiome plays a role in the human health and the body’s susceptibility to disease. The human gut microbiome, which contains approximately three trillion bacteria, aids digestion and provides protection against infections. It is determined by a person’s individual genetic makeup and their environment, so is unique to each person. It also remains relatively stable across a person’s life, unless it is affected by antibiotics, an illness or a change of diet, among other things.

Read More

Events