Improving How Neurological Drugs are Developed Using Cell-Type-Specific Analysis

Studying the brain and developing drugs against neurological diseases have been challenging for many reasons, including not fully understanding the pathology of neurological diseases like Alzheimer’s and Parkinson’s. Ideally, drugs that specifically target proteins involved in disease are desirable because they limit side effects. However, you need to know what protein to target before setting out to develop a drug against it. How do researchers determine what should be targeted within the complexity of the brain?

Spotlight

Centric Health

Founded in 2003, Centric Health provides Primary Healthcare GP and Dental Services, Urgent Care, Radiology, Retinal Screening and Occupational Health Services to over 200,000 patients throughout Ireland and the UK each year: Centric Health GP: GP Care is delivered throughout Ireland via an expanding network of purpose-built Primary Care facilities where Centric GP Doctors, Dentists and Nurses work in tandem with Medical Specialists and HSE Primary Care teams (www.centricgp.ie). VHI Swiftcare: In response to long wait times in A & E Hospital departments, Centric Health and VHI formed the VHI Swiftcare Urgent Care network, providing non-life threatening medical care to over 1000 patients a day, 8am to 10pm, 365 days a year.

OTHER ARTICLES
MedTech

Advancement in Genomics Accelerating its Penetration into Precision Health

Article | October 7, 2022

Genomics is an interdisciplinary field of biology emphasizing the structure, editing, evolution, function, and mapping of genomes. It is creating deeper inroads across the precision health domain with the increasing introduction of advanced technologies such as quantum simulation, next-generation sequencing (NGS), and precise genome manipulation. As precision health focuses on providing the proper intervention to the right patient at the right time, genomics increasingly finds applications in human and pathogen genome sequencing in clinical and research spaces. Rising Hereditary Diseases Burden Paving the Way for Genomics in Precision Health In the last few years, a significant surge in the prevalence of diseases and ailments such as diabetes, obesity, baldness, and others has been witnessed across the globe. A history of family members with chronic diseases, such as cancer, diabetes, high blood pressure, hearing issues, and heart disease, can sometimes continue into the next generation. Hence, the study of genes is extensively being conducted for predicting health risks and early treatment of these diseases. It also finds use in CRISPR-based diagnostics and the preparation of precision medication for the individual. In addition, ongoing advancements in genomics are making it possible to identify different genetic traits that persuade people to more widespread diseases and health problems. The Emergence of Genomics Improves Disease Understanding Genomics refers to the study of the complete genetic makeup of a cell or organism. Increasing scientific research in the area substantially contributes to increasing knowledge about the human genome and assists in improving the ability to understand disease etiology, risk, diagnosis, treatment, and prevention. On account of these improvements, innovative genomic technologies and tools are being developed to enable better precision health not only for the individual but for various regional populations as well. The Way Forward With growing preference for personalized medicine and an increasing need for more accurate pathogen detection and diagnostics, genomics is gaining huge popularity across the precision health domain. Also, increasing research activities for developing novel high-precision therapeutics and rising importance of gene study in the prevention, diagnosis, and management of infectious and genetic diseases will further pave the way for genomics in the forthcoming years.

Read More
MedTech

2 Small-Cap Biotech Stocks You Haven't Heard of, But Should Know About

Article | September 22, 2022

With everything that's going on with the COVID-19 pandemic, many healthcare companies have grabbed plenty of spotlight during these challenging times. At the same time, a number of otherwise promising businesses have slipped under the radar. That's especially true for small-cap biotech stocks that aren't actively involved in developing tests, vaccines or treatments for COVID-19. Vaccine developers, protective equipment producers, and healthcare service providers are all attracting plenty of attention during this pandemic, but there are just as many promising biotech stocks that aren't involved in these areas. Here are two such companies that you might have missed, but they deserve a spot on your watch list.

Read More
Research

Data Analytics: A Groundbreaking Technology in Biotech

Article | July 11, 2022

Biotechnology is a vast discipline of biology that employs diverse biological systems to create solutions that can significantly alter the ways in which they operate across various domains. That said, biotechnology is not a new notion. It has existed for millennia, with ancient civilizations using its earliest incarnations to cultivate crops and create alcoholic beverages. Today, the biotechnology industry has developed by leaps and bounds and has amassed a vast quantity of scientific data through study and research. Given the importance of data in the biotechnology business, it is not difficult to understand why biotech companies utilize data analytics. Modern data analytics tools have made it possible for researchers in the biotech industry to build predictive analytics models and gain knowledge about the most efficient approaches to accomplish their desired goals and objectives. Data analytics is increasingly being adopted by biotech businesses to better understand their industry and foresee any problems down the road. How is Data Analytics Revolutionizing Fields in Biotechnology? Today's business and scientific fields greatly benefit from data. Without the analysis of vast information libraries that provide new insights and enable new innovations, no industry can really advance. Being highly reliant on big data analytics, biotech is not an exception in this regard. With the tools and methods that help scientists systematize their findings and speed up their research for better and safer results, data analytics is making deeper inroads into the biotechnology industry. It is emerging as a crucial link between knowledge and information and is extensively being used for purposes other than just examining the information that is already available. The following are a few of the cutting-edge biotechnology applications of data analytics Genomics and Disease Treatment Pharmaceutical Drug Discovery Drug Recycling and Safety Agriculture and Agri-products Environmental Damage Mitigation Data Analytics Possibilities in Biotechnology With data analytics becoming an integral part of how biotech businesses operate, biotechnologists and related stakeholders need to understand its emergence and crucial role. Data analytics has opened new frontiers in the realm of biotechnology. Thanks to developments in data analytics, research and development activities that once took years may now be accomplished in a matter of months. Also, now scientists have access to biological, social, and environmental insights that can be exploited to create more effective and sustainable products. By understanding the importance of data-related tools and techniques applications, biotech companies are aiming to invest in the popularizing technology to stay updated in the fast-paced biotechnology industry.

Read More
MedTech

Next-Gen Gene Therapy to Counter Complex Diseases

Article | July 13, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More

Spotlight

Centric Health

Founded in 2003, Centric Health provides Primary Healthcare GP and Dental Services, Urgent Care, Radiology, Retinal Screening and Occupational Health Services to over 200,000 patients throughout Ireland and the UK each year: Centric Health GP: GP Care is delivered throughout Ireland via an expanding network of purpose-built Primary Care facilities where Centric GP Doctors, Dentists and Nurses work in tandem with Medical Specialists and HSE Primary Care teams (www.centricgp.ie). VHI Swiftcare: In response to long wait times in A & E Hospital departments, Centric Health and VHI formed the VHI Swiftcare Urgent Care network, providing non-life threatening medical care to over 1000 patients a day, 8am to 10pm, 365 days a year.

Related News

Cell and Gene Therapy

Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx™ Genome Engineering Platform

Amyris | October 06, 2021

Amyris, Inc. (Nasdaq: AMRS), a leading synthetic biotechnology company active in the Clean Health and Beauty markets through its consumer brands, and a top supplier of sustainable and natural ingredients, today announced that Amyris has licensed the Onyx genome engineering platform from Inscripta, a leading gene editing technology company. Amyris and Inscripta will also explore joint research and development opportunities to expand the Onyx platform functionality. Amyris' product development and formulation team uses a proprietary Lab-to-Market™ operating system to develop and scale a growing portfolio of sustainable ingredients. The Onyx platform automates benchtop biofoundry activity and will bring greater genetic diversity and value to Amyris' ingredient development pipeline, complementing Amyris' existing Lab-to-Market operating system with the goal of improving efficiency and reducing timelines for the development of future molecules. To date, Amyris has successfully commercialized 13 sustainable ingredients, which are formulated in over 20,000 products and used by over 300 million consumers, demonstrating the growing demand for sustainable products with clean and effective ingredients. Automated, high-throughput gene editing is revolutionizing the writing of genomes the way next-generation sequencing transformed the reading of genomes. Inscripta is the first company to deliver an integrated and intuitive benchtop platform that will expand access to scalable, robust genome engineering and help scientists develop solutions to some of today's most pressing challenges. "Amyris has shown the world how new products can be made more sustainable through biology. Their team has high proficiency in utilizing cutting-edge technology, and we are excited they will be pioneering the use of our platform," said Sri Kosaraju, President and CEO of Inscripta. "We have great regard for Amyris' mission, and we are committed to seeing the Onyx platform become a substantial contributor to new clean chemistry products in the future." "The Onyx platform offers significant potential for generating greater genetic diversity in our projects, which we expect to lead to more efficient product innovation," said Sunil Chandran, Senior Vice President of Research and Development at Amyris. "Inscripta's platform seamlessly integrates with our own and opens up new experimentation avenues for our scientists to continue bringing unique bio-based products to customers. We pride ourselves on continuous innovation and expect Onyx to help us expand our pipeline, while achieving lower costs and reducing time to market." For more information about Amyris visit amyris.com and to learn about Onyx, visit www.inscripta.com/products. About Inscripta Inscripta is a life science technology company enabling scientists to solve some of today's most pressing challenges with the first benchtop system for genome editing. The company's automated Onyx platform, consisting of an instrument, consumables, assays, and software, makes CRISPR-based genome engineering accessible to any research lab. Inscripta supports its customers around the world from facilities in Boulder, Colorado; San Diego and Pleasanton, California; and Copenhagen, Denmark. To learn more, visit Inscripta.com and follow @InscriptaInc. About Amyris Amyris (Nasdaq: AMRS) is a science and technology leader in the research, development and production of sustainable ingredients for the Clean Health & Beauty and Flavors & Fragrances markets. Amyris uses an impressive array of exclusive technologies, including state-of-the-art machine learning, robotics and artificial intelligence. Our ingredients are included in over 20,000 products from the world's top brands, reaching more than 300 million consumers. Amyris is proud to own and operate a family of consumer brands - all built around its No Compromise® promise of clean ingredients: Biossanceâ clean beauty skincare, Pipetteâ clean baby skincare, Purecane™, a zero-calorie sweetener naturally derived from sugarcane, Terasanaâ clean skincare treatment, Costa Brazil luxury skincare, OLIKA hygiene and wellness, Rose Inc.™ clean color cosmetics and JVN™ clean haircare.

Read More

Better Biosensor Technology Created for Stem Cells

Technology Networks | November 11, 2019

A Rutgers-led team has created better biosensor technology that may help lead to safe stem cell therapies for treating Alzheimer’s and Parkinson’s diseases and other neurological disorders. The technology, which features a unique graphene and gold-based platform and high-tech imaging, monitors the fate of stem cells by detecting genetic material (RNA) involved in turning such cells into brain cells (neurons), according to a study in the journal Nano Letters. Stem cells can become many different types of cells. As a result, stem cell therapy shows promise for regenerative treatment of neurological disorders such as Alzheimer’s, Parkinson’s, stroke and spinal cord injury, with diseased cells needing replacement or repair. But characterizing stem cells and controlling their fate must be resolved before they could be used in treatments. The formation of tumors and uncontrolled transformation of stem cells remain key barriers. “A critical challenge is ensuring high sensitivity and accuracy in detecting biomarkers – indicators such as modified genes or proteins – within the complex stem cell microenvironment,” said senior author KiBum Lee, a professor in the Department of Chemistry and Chemical Biology in the School of Arts and Sciences at Rutgers University–New Brunswick. “Our technology, which took four years to develop, has demonstrated great potential for analyzing a variety of interactions in stem cells.”

Read More

Cells’ Mitochondria Work Much Like Tesla Battery Packs

Technology Networks | October 16, 2019

For years, scientists assumed that mitochondria — the energy-generating centers of living cells — worked much like household batteries, generating energy from a chemical reaction inside a single chamber or cell. Now, UCLA researchers have shown that mitochondria are instead made up of many individual bioelectric units that generate energy in an array, similar to a Tesla electric car battery that packs thousands of battery cells to manage energy safely and provide fast access to very high current. “Nobody had looked at this before because we were so locked into this way of thinking; the assumption was that one mitochondrion meant one battery,” said Dr. Orian Shirihai, a professor of medicine in endocrinology and pharmacology at the David Geffen School of Medicine at UCLA and senior author of the study published in EMBO Journal. It is also not a coincidence that this has taken place in California, where an electric vehicle revolution has made its impact everywhere on campus. Mitochondria are one type of organelle — tiny structures that perform specific functions within a cell. All cells in the human body, except for red blood cells, contain one or more — sometimes several thousand — mitochondria. These organelles have a smooth outer membrane and a wrinkled inner membrane that has folds, called cristae, extending toward the mitochondrion’s center. Until now, researchers thought that the purpose of the inner membrane’s wrinkly texture was simply to increase the surface area for energy production.

Read More

Cell and Gene Therapy

Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx™ Genome Engineering Platform

Amyris | October 06, 2021

Amyris, Inc. (Nasdaq: AMRS), a leading synthetic biotechnology company active in the Clean Health and Beauty markets through its consumer brands, and a top supplier of sustainable and natural ingredients, today announced that Amyris has licensed the Onyx genome engineering platform from Inscripta, a leading gene editing technology company. Amyris and Inscripta will also explore joint research and development opportunities to expand the Onyx platform functionality. Amyris' product development and formulation team uses a proprietary Lab-to-Market™ operating system to develop and scale a growing portfolio of sustainable ingredients. The Onyx platform automates benchtop biofoundry activity and will bring greater genetic diversity and value to Amyris' ingredient development pipeline, complementing Amyris' existing Lab-to-Market operating system with the goal of improving efficiency and reducing timelines for the development of future molecules. To date, Amyris has successfully commercialized 13 sustainable ingredients, which are formulated in over 20,000 products and used by over 300 million consumers, demonstrating the growing demand for sustainable products with clean and effective ingredients. Automated, high-throughput gene editing is revolutionizing the writing of genomes the way next-generation sequencing transformed the reading of genomes. Inscripta is the first company to deliver an integrated and intuitive benchtop platform that will expand access to scalable, robust genome engineering and help scientists develop solutions to some of today's most pressing challenges. "Amyris has shown the world how new products can be made more sustainable through biology. Their team has high proficiency in utilizing cutting-edge technology, and we are excited they will be pioneering the use of our platform," said Sri Kosaraju, President and CEO of Inscripta. "We have great regard for Amyris' mission, and we are committed to seeing the Onyx platform become a substantial contributor to new clean chemistry products in the future." "The Onyx platform offers significant potential for generating greater genetic diversity in our projects, which we expect to lead to more efficient product innovation," said Sunil Chandran, Senior Vice President of Research and Development at Amyris. "Inscripta's platform seamlessly integrates with our own and opens up new experimentation avenues for our scientists to continue bringing unique bio-based products to customers. We pride ourselves on continuous innovation and expect Onyx to help us expand our pipeline, while achieving lower costs and reducing time to market." For more information about Amyris visit amyris.com and to learn about Onyx, visit www.inscripta.com/products. About Inscripta Inscripta is a life science technology company enabling scientists to solve some of today's most pressing challenges with the first benchtop system for genome editing. The company's automated Onyx platform, consisting of an instrument, consumables, assays, and software, makes CRISPR-based genome engineering accessible to any research lab. Inscripta supports its customers around the world from facilities in Boulder, Colorado; San Diego and Pleasanton, California; and Copenhagen, Denmark. To learn more, visit Inscripta.com and follow @InscriptaInc. About Amyris Amyris (Nasdaq: AMRS) is a science and technology leader in the research, development and production of sustainable ingredients for the Clean Health & Beauty and Flavors & Fragrances markets. Amyris uses an impressive array of exclusive technologies, including state-of-the-art machine learning, robotics and artificial intelligence. Our ingredients are included in over 20,000 products from the world's top brands, reaching more than 300 million consumers. Amyris is proud to own and operate a family of consumer brands - all built around its No Compromise® promise of clean ingredients: Biossanceâ clean beauty skincare, Pipetteâ clean baby skincare, Purecane™, a zero-calorie sweetener naturally derived from sugarcane, Terasanaâ clean skincare treatment, Costa Brazil luxury skincare, OLIKA hygiene and wellness, Rose Inc.™ clean color cosmetics and JVN™ clean haircare.

Read More

Better Biosensor Technology Created for Stem Cells

Technology Networks | November 11, 2019

A Rutgers-led team has created better biosensor technology that may help lead to safe stem cell therapies for treating Alzheimer’s and Parkinson’s diseases and other neurological disorders. The technology, which features a unique graphene and gold-based platform and high-tech imaging, monitors the fate of stem cells by detecting genetic material (RNA) involved in turning such cells into brain cells (neurons), according to a study in the journal Nano Letters. Stem cells can become many different types of cells. As a result, stem cell therapy shows promise for regenerative treatment of neurological disorders such as Alzheimer’s, Parkinson’s, stroke and spinal cord injury, with diseased cells needing replacement or repair. But characterizing stem cells and controlling their fate must be resolved before they could be used in treatments. The formation of tumors and uncontrolled transformation of stem cells remain key barriers. “A critical challenge is ensuring high sensitivity and accuracy in detecting biomarkers – indicators such as modified genes or proteins – within the complex stem cell microenvironment,” said senior author KiBum Lee, a professor in the Department of Chemistry and Chemical Biology in the School of Arts and Sciences at Rutgers University–New Brunswick. “Our technology, which took four years to develop, has demonstrated great potential for analyzing a variety of interactions in stem cells.”

Read More

Cells’ Mitochondria Work Much Like Tesla Battery Packs

Technology Networks | October 16, 2019

For years, scientists assumed that mitochondria — the energy-generating centers of living cells — worked much like household batteries, generating energy from a chemical reaction inside a single chamber or cell. Now, UCLA researchers have shown that mitochondria are instead made up of many individual bioelectric units that generate energy in an array, similar to a Tesla electric car battery that packs thousands of battery cells to manage energy safely and provide fast access to very high current. “Nobody had looked at this before because we were so locked into this way of thinking; the assumption was that one mitochondrion meant one battery,” said Dr. Orian Shirihai, a professor of medicine in endocrinology and pharmacology at the David Geffen School of Medicine at UCLA and senior author of the study published in EMBO Journal. It is also not a coincidence that this has taken place in California, where an electric vehicle revolution has made its impact everywhere on campus. Mitochondria are one type of organelle — tiny structures that perform specific functions within a cell. All cells in the human body, except for red blood cells, contain one or more — sometimes several thousand — mitochondria. These organelles have a smooth outer membrane and a wrinkled inner membrane that has folds, called cristae, extending toward the mitochondrion’s center. Until now, researchers thought that the purpose of the inner membrane’s wrinkly texture was simply to increase the surface area for energy production.

Read More

Events