How to Produce & Regulate Lab-Grown Meat

MARGOT RUBIN | July 9, 2019 | 54 views

There’s a revolution underway in the science and production of meat. Imagine a future where beef, poultry, and pork are no longer grown on farms and ranches, but cultivated in bioreactors. Multinational food players, such as Cargill and Tyson, and business tycoons, like Bill Gates and Richard Branson, are now investing in tech start-ups that are merging science, technology and the culinary arts together like never before. The result? A billion-dollar market on the verge of producing meat for consumption that takes slaughtered animals completely out of the equation.

Spotlight

Compugen Ltd

Compugen is a leading drug discovery company focused on therapeutic proteins and monoclonal antibodies to address important unmet needs in the fields of immunology and oncology. The Company utilizes a broad and continuously growing integrated infrastructure of proprietary scientific understandings and predictive platforms, algorithms, machine learning systems and other computational biology capabilities for the in silico (by computer) prediction and selection of product candidates, which are then advanced in its Pipeline Program.

OTHER ARTICLES
MEDTECH

Top 10 biotech IPOs in 2019

Article | September 22, 2022

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More
MEDTECH

Cell Out? Lysate-Based Expression an Option for Personalized Meds

Article | July 20, 2022

Cell-free expression (CFE) is the practice of making a protein without using a living cell. In contrast with cell line-based methods, production is achieved using a fluid containing biological components extracted from a cell, i.e., a lysate. CFE offers potential advantages for biopharma according to Philip Probert, PhD, a senior scientist at the Centre for Process Innovation in the U.K.

Read More
MEDTECH

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | July 11, 2022

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Selexis Cell Line Development Strategies

Article | February 11, 2020

In today’s biotechnology landscape, to be competitive, meet regulations, and achieve market demands, “we must apply Bioprocessing 4.0,” said Igor Fisch, PhD, CEO, Selexis. In fact, in the last decade, “Selexis has evolved from cloning by limiting dilution to automated cell selection to nanofluidic chips and from monoclonality assessment by statistical calculation to proprietary bioinformatic analysis,” he added. Single-use processing systems are an expanding part of the biomanufacturing world; as such, they are a major component of Bioprocessing 4.0. “At Selexis, we use single use throughout our cell line development workflow. Currently, we have incorporated single-use automated bioprocessing systems such as ambr® and the Beacon® optofluidic platform for accelerated cell line development. By using these systems and optimizing our parameters, we were able to achieve high titers in shake flasks. Additionally, the Beacon systems integrate miniaturized cell culture with high-throughput liquid handling automation and cell imaging. This allows us to control, adjust, and monitor programs at the same time,” noted Fisch.

Read More

Spotlight

Compugen Ltd

Compugen is a leading drug discovery company focused on therapeutic proteins and monoclonal antibodies to address important unmet needs in the fields of immunology and oncology. The Company utilizes a broad and continuously growing integrated infrastructure of proprietary scientific understandings and predictive platforms, algorithms, machine learning systems and other computational biology capabilities for the in silico (by computer) prediction and selection of product candidates, which are then advanced in its Pipeline Program.

Related News

Real Texture for Lab-grown Meat

Technology Networks | October 21, 2019

Lab-grown or cultured meat could revolutionize food production, providing a greener, more sustainable, more ethical alternative to large-scale meat production. But getting lab-grown meat from the petri dish to the dinner plate requires solving several major problems, including how to make large amounts of it and how to make it feel and taste more like real meat. Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have grown rabbit and cow muscles cells on edible gelatin scaffolds that mimic the texture and consistency of meat, demonstrating that realistic meat products may eventually be produced without the need to raise and slaughter animals. Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at SEAS and senior author of the study, began his foray into food after judging a competition show on the Food Network. "The materials science expertise of the chefs was impressive," said Parker. "After discussions with them, I began to wonder if we could apply all that we knew about regenerative medicine to the design of synthetic foods. After all, everything we have learned about building organs and tissues for regenerative medicine applies to food: healthy cells and healthy scaffolds are the building substrates, the design rules are the same, and the goals are the same: human health. This is our first effort to bring hardcore engineering design and scalable manufacturing to the creation of food."

Read More

AbbVie's Skyrizi wins its first FDA approval, springing blockbuster ambitions

biopharmadive | April 24, 2019

The psoriasis approval for Skyrizi (risankizumab) in the U.S. was expected, following a similar go-ahead from regulators in Japan and a positive recommendation from the European Medicines Agency's Committee for Medicinal Products for Human Use. In Phase 3 studies of the drug, roughly 80% of patients with moderate to severe plaque psoriasis achieved 90% clear skin and slightly more than half reached complete skin clearance using Skyrizi. However, the anti-IL23 antibody is far from alone in the next generation of immunology drugs. Other interleukin inhibitors already on the market include J&J's anti-IL 12/23 Stelara (ustekinumab) as well as the IL-17 inhibitors Cosentyx (secukinumab) and Taltz (ixekizumab), respectively marketed by Novartis and Eli Lilly.

Read More

President-elect Trump’s promise to bring down drug prices sends biotech and pharma ETFs slumping

SPDR S&P Biotech | December 07, 2016

Biotech and pharmaceutical companies’ Trump rally hit reality hard Wednesday, with a single comment from the president-elect sending ETFs for both sectors sharply down in morning and midday trade. “I’m going to bring down drug prices, Donald Trump told Time in his “Person of the Year cover story. I don’t like what has happened with drug prices.

Read More

Real Texture for Lab-grown Meat

Technology Networks | October 21, 2019

Lab-grown or cultured meat could revolutionize food production, providing a greener, more sustainable, more ethical alternative to large-scale meat production. But getting lab-grown meat from the petri dish to the dinner plate requires solving several major problems, including how to make large amounts of it and how to make it feel and taste more like real meat. Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have grown rabbit and cow muscles cells on edible gelatin scaffolds that mimic the texture and consistency of meat, demonstrating that realistic meat products may eventually be produced without the need to raise and slaughter animals. Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at SEAS and senior author of the study, began his foray into food after judging a competition show on the Food Network. "The materials science expertise of the chefs was impressive," said Parker. "After discussions with them, I began to wonder if we could apply all that we knew about regenerative medicine to the design of synthetic foods. After all, everything we have learned about building organs and tissues for regenerative medicine applies to food: healthy cells and healthy scaffolds are the building substrates, the design rules are the same, and the goals are the same: human health. This is our first effort to bring hardcore engineering design and scalable manufacturing to the creation of food."

Read More

AbbVie's Skyrizi wins its first FDA approval, springing blockbuster ambitions

biopharmadive | April 24, 2019

The psoriasis approval for Skyrizi (risankizumab) in the U.S. was expected, following a similar go-ahead from regulators in Japan and a positive recommendation from the European Medicines Agency's Committee for Medicinal Products for Human Use. In Phase 3 studies of the drug, roughly 80% of patients with moderate to severe plaque psoriasis achieved 90% clear skin and slightly more than half reached complete skin clearance using Skyrizi. However, the anti-IL23 antibody is far from alone in the next generation of immunology drugs. Other interleukin inhibitors already on the market include J&J's anti-IL 12/23 Stelara (ustekinumab) as well as the IL-17 inhibitors Cosentyx (secukinumab) and Taltz (ixekizumab), respectively marketed by Novartis and Eli Lilly.

Read More

President-elect Trump’s promise to bring down drug prices sends biotech and pharma ETFs slumping

SPDR S&P Biotech | December 07, 2016

Biotech and pharmaceutical companies’ Trump rally hit reality hard Wednesday, with a single comment from the president-elect sending ETFs for both sectors sharply down in morning and midday trade. “I’m going to bring down drug prices, Donald Trump told Time in his “Person of the Year cover story. I don’t like what has happened with drug prices.

Read More

Events