How synthetic biology will transform manufacturing and improve sustainability

JOHN CUMBERS, NICHOLAS MCCARTY | October 7, 2019 | 17 views

Sustainability is in vogue, with businesses and cities jostling to improve their public image and produce goods and services using renewable sources. Yet cities exponentially swell and carbon emissions continue to increase. Global CO2 emissions rise nearly every year (about 36 billion tons in 2014), with the bulk of these derived from solid and liquid fuels.

Spotlight

UCLA Health

For more than half a century, UCLA Health has provided the best in healthcare and the latest in medical technology to the people of Los Angeles and throughout the world. Comprised of Ronald Reagan UCLA Medical Center, UCLA Medical Center Santa Monica, Resnick Neuropsychiatric Hospital at UCLA, UCLA Mattel Children's Hospital, and the UCLA Medical Group with its wide-reaching system of primary-care and specialty-care offices throughout the region, UCLA Health is among the most comprehensive and advanced healthcare systems in the world.

OTHER ARTICLES
MEDICAL

Expansion of BioPharma: Opportunities and Investments

Article | August 16, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
MEDICAL

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | July 14, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More
MEDTECH

Biotech in 2022

Article | July 5, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More
MEDTECH

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | July 5, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More

Spotlight

UCLA Health

For more than half a century, UCLA Health has provided the best in healthcare and the latest in medical technology to the people of Los Angeles and throughout the world. Comprised of Ronald Reagan UCLA Medical Center, UCLA Medical Center Santa Monica, Resnick Neuropsychiatric Hospital at UCLA, UCLA Mattel Children's Hospital, and the UCLA Medical Group with its wide-reaching system of primary-care and specialty-care offices throughout the region, UCLA Health is among the most comprehensive and advanced healthcare systems in the world.

Related News

AI

eureKARE and DNAlytics Form Partnership to Develop a Proprietary AI Platform

eureKARE | July 07, 2021

eureKARE, a pioneering new company focused on financing and building next-generation biotechnology companies in the disruptive fields of the microbiome and synthetic biology, today announced an agreement with DNAlytics, a Belgian company applying data sciences to healthcare, to develop eureKARE's proprietary Artificial Intelligence (AI) platform to support its Biotech start-upstart-up studios, eureKARE. Unlike conventional start-upstart-up incubation methods, which begin with new science and then attempt to find an issue to address with it, eureKARE's methodology reverses this. eureKARE is committed to first finding an unmet need and then enlisting the best scientists and experts to provide an innovative solution to launch exciting new ventures. This process will be aided by eureKARE's one-of-a-kind AI platform, which will assist the business in identifying top academic researchers, locating new ideas and approaches in development, and scaling existing portfolio companies. About eureKARE eureKARE is a ground-breaking new company focusing on financing and establishing next-generation biotechnology start-ups in the microbiome and synthetic biology cutting-edge areas. eureKARE employs a two-step investing strategy to create long-term value. Through its biotech start-upstart-up studios eureKABIOME (Microbiome) and eureKASYNBIO, the company promotes translational research by developing and financing new companies based on high-value European science (Synthetic biology). In addition, the company aims to engage in more mature biotech companies. It will systematically propose to provide some liquidity to early investors, thus fulfilling a crucial demand in the European biotech sector. EureKARE has a fast-expanding portfolio of companies with the potential to disrupt the life sciences sector, led by its prominent founder, Alexandre Mouradian, and a pan-European team. About DNAlytics DNAlytics is based in Louvain-la-Neuve, Belgium, specializing in data science for the healthcare sector, including data management, bioinformatics, biostatistics, Machine Learning, and other Artificial Intelligence methods. DNAlytics products are utilized in clinical research, the creation of biotech drugs and medical devices, public health studies, and the monitoring and optimization of bio-manufacturing processes. In addition, DNAlytics assists a wide range of clients and partners in extracting scientifically sound observations and practical conclusions from complex data sets.

Read More

Tennessee researchers join call for responsible development of synthetic biology

Phys.org | October 18, 2019

Engineering biology is already transforming technology and science, and a consortium of researchers across many disciplines in the international Genome Project-write is calling for more discussion among scientists, policy makers and the general public to shepherd future development. In a policy forum article published in the October 18 issue of Science, the authors outline the technological advances needed to secure the transformative future of synthetic biology and express their concerns that the implementation of the relatively new discipline remains safe and responsible. Two researchers with the University of Tennessee Institute of Agriculture are co-authors on the piece titled "Technological challenges and milestones for writing genomes: synthetic genomics requires improved technologies." Neal Stewart and Scott Lenaghan with the UTIA departments of Plant Sciences and Food Science, respectively, join Nili Ostrov, a Ph.D. research fellow in genetics at Harvard Medical School, and 18 other leading scientists from a number of institutions and disciplines, in outlining a potential timeline for the development of what they call transformative advances to science and society.

Read More

Bioactive Agents Improve Synthetic Bone Substitutes

Technology Networks | October 18, 2019

Synthetic bone substitutes are promising materials for bone defect repair, but their efficacy can be substantially improved by bioactive agents such as growth factors. In a new study, researchers have modified beta-tricalcium phosphate (β-TCP) with increasing quantities of bone morphogenetic protein 2 (BMP-2) derived from E. coli and shown improved bone healing. The study is published in Tissue Engineering, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Yuelian Liu, PhD, Academic Center for Dentistry Amsterdam, Amsterdam, Netherlands, and colleagues present their work in an article titled "Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects". The authors created bone defects in a rat calvarial model and then attempted repair using β-TCP granules coated with a biomimetic calcium phosphate preparation that allows slow release of BMP-2. Bone growth and maturation were studied in comparison with autologous bone grafts using micro-CT scans, histology, and histomorphometry, and toxicity was assessed with blood tests. The E. coli-derived BMP-2 successfully improved bone formation with efficacy comparable to autologous grafts, and higher BMP-2 concentration promoted bone maturation.

Read More

AI

eureKARE and DNAlytics Form Partnership to Develop a Proprietary AI Platform

eureKARE | July 07, 2021

eureKARE, a pioneering new company focused on financing and building next-generation biotechnology companies in the disruptive fields of the microbiome and synthetic biology, today announced an agreement with DNAlytics, a Belgian company applying data sciences to healthcare, to develop eureKARE's proprietary Artificial Intelligence (AI) platform to support its Biotech start-upstart-up studios, eureKARE. Unlike conventional start-upstart-up incubation methods, which begin with new science and then attempt to find an issue to address with it, eureKARE's methodology reverses this. eureKARE is committed to first finding an unmet need and then enlisting the best scientists and experts to provide an innovative solution to launch exciting new ventures. This process will be aided by eureKARE's one-of-a-kind AI platform, which will assist the business in identifying top academic researchers, locating new ideas and approaches in development, and scaling existing portfolio companies. About eureKARE eureKARE is a ground-breaking new company focusing on financing and establishing next-generation biotechnology start-ups in the microbiome and synthetic biology cutting-edge areas. eureKARE employs a two-step investing strategy to create long-term value. Through its biotech start-upstart-up studios eureKABIOME (Microbiome) and eureKASYNBIO, the company promotes translational research by developing and financing new companies based on high-value European science (Synthetic biology). In addition, the company aims to engage in more mature biotech companies. It will systematically propose to provide some liquidity to early investors, thus fulfilling a crucial demand in the European biotech sector. EureKARE has a fast-expanding portfolio of companies with the potential to disrupt the life sciences sector, led by its prominent founder, Alexandre Mouradian, and a pan-European team. About DNAlytics DNAlytics is based in Louvain-la-Neuve, Belgium, specializing in data science for the healthcare sector, including data management, bioinformatics, biostatistics, Machine Learning, and other Artificial Intelligence methods. DNAlytics products are utilized in clinical research, the creation of biotech drugs and medical devices, public health studies, and the monitoring and optimization of bio-manufacturing processes. In addition, DNAlytics assists a wide range of clients and partners in extracting scientifically sound observations and practical conclusions from complex data sets.

Read More

Tennessee researchers join call for responsible development of synthetic biology

Phys.org | October 18, 2019

Engineering biology is already transforming technology and science, and a consortium of researchers across many disciplines in the international Genome Project-write is calling for more discussion among scientists, policy makers and the general public to shepherd future development. In a policy forum article published in the October 18 issue of Science, the authors outline the technological advances needed to secure the transformative future of synthetic biology and express their concerns that the implementation of the relatively new discipline remains safe and responsible. Two researchers with the University of Tennessee Institute of Agriculture are co-authors on the piece titled "Technological challenges and milestones for writing genomes: synthetic genomics requires improved technologies." Neal Stewart and Scott Lenaghan with the UTIA departments of Plant Sciences and Food Science, respectively, join Nili Ostrov, a Ph.D. research fellow in genetics at Harvard Medical School, and 18 other leading scientists from a number of institutions and disciplines, in outlining a potential timeline for the development of what they call transformative advances to science and society.

Read More

Bioactive Agents Improve Synthetic Bone Substitutes

Technology Networks | October 18, 2019

Synthetic bone substitutes are promising materials for bone defect repair, but their efficacy can be substantially improved by bioactive agents such as growth factors. In a new study, researchers have modified beta-tricalcium phosphate (β-TCP) with increasing quantities of bone morphogenetic protein 2 (BMP-2) derived from E. coli and shown improved bone healing. The study is published in Tissue Engineering, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Yuelian Liu, PhD, Academic Center for Dentistry Amsterdam, Amsterdam, Netherlands, and colleagues present their work in an article titled "Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects". The authors created bone defects in a rat calvarial model and then attempted repair using β-TCP granules coated with a biomimetic calcium phosphate preparation that allows slow release of BMP-2. Bone growth and maturation were studied in comparison with autologous bone grafts using micro-CT scans, histology, and histomorphometry, and toxicity was assessed with blood tests. The E. coli-derived BMP-2 successfully improved bone formation with efficacy comparable to autologous grafts, and higher BMP-2 concentration promoted bone maturation.

Read More

Events