How organic industry opposition to CRISPR gene editing encourages pesticide use

The increasing popularity of organic food is driven largely by consumers hoping to avoid pesticide exposure. When the Soil Association, a UK-based organic advocacy group, asked consumers why they didn’t buy conventional foods, 95 percent of them said they did so because of pesticides. Despite the fact that organic growers do indeed utilize pesticides — some of which can be very harmful to human health and wildlife — the organic food movement has done its utmost to promote the myth of chemical-free “natural” agriculture, contrasting it with the idea that conventional farmers rely on a bevy of “toxic” substances to grow their crops.

Spotlight

C4 Therapeutics, Inc.

C4 Therapeutics is an early stage a drug discovery company whose mission is to harness targeted protein degradation to develop therapeutics for a broad range of diseases. The centerpiece of our approach is the Degronimid® platform, which enables highly selective small molecule binders to target disease causing proteins and facilitate their rapid destruction and clearance from the cell through the natural ubiquitin/proteasome system

OTHER ARTICLES
Medical

AI and Biotechnology: The Future of Healthcare Industry

Article | August 16, 2022

Artificial intelligence has grasped the foundation in biotech. It can have the most innovative impact on biotechnology. AI has already established its presence in our day-to-day life. AI has made the existence of self-driving cars possible. Likewise, the benefits and quality that it can contribute to biotech can also be felt. With AI, bio technicians will be able to enhance virtual screening, overlook preliminary datasets from clinics, and decipher an enormous amount of information. It can also help in improving the medication process by gathering and analyzing every bit of information. The Significance of AI in Biotechnology In the past few years, the application of artificial intelligence in the biotechnology industry has shifted from being sci-fi to sci-fact. A vast number of biotech companies like Deep Genomics are adopting AI for making data-driven decisions and use analytics tools to work efficiently. Unlike the AI robots in sci-fi that are ready to take over the world. AI designed for biotech has been designed to solve certain problems or complete a bunch of tasks by using automated algorithms. The aim of AI technology for biotech is to collect insights along with hidden patterns from large amounts of data. All the different industries of biotech including agriculture, animal, medical, industrial, and bioinformatics are gradually being affected by artificial intelligence. Moreover, the biotech industry is realizing that AI enables them some of the important strength to their business, including: Expanding accessibility Cost-effectiveness Critical predictions Efficient decision-making Research centers like PwC have also estimated output of $15.7 trillion by 2030 solely with AI contribution in industries. A survey revealed that about 44% of life science experts are using AI for R&D activities, as well. Use of AI in Biotechnology Altering Biomedical and Clinical Data So far the most developed use of AI is its ability to read voluminous data records and interpret them. It can prove to be a life-save for bio technicians who would have to examine that much data from research publications by themselves for the validation of their hypothesis. With the help of AI, clinical studies of patients will also become easier as all the examination reports and prescriptions will be stored in one place for cross-reference. Furthermore, it will also help in blending and fetching data into usable formats for analysis. Test Result Prediction Through trial and error, AI along with machine learning can help in predicting the response of the patient to certain drugs to provide more effective outcomes. Drug Design & Discovery AI plays a vital role whether it’s designing a new molecule or identifying new biological targets. It helps in identifying and validating drugs. It reduces the cost and time spent on the entire drug trial process and reaches the market. Personalized Medications for Rare Diseases With the combination of body scan results, patients’ body and analytics, AI can also help in detecting dangerous diseases at an early stage. Improving Process of Manufacturing To improve the process of manufacturing in biotechnology, AI offers a wide range of opportunities. It controls quality, reduces wastage, improves useability, and minimizes the designing time. Moving Towards AI-Enhanced Biotech Future Ever since the concept of artificial intelligence has arrived, being curious by nature, humans have started working towards achieving this goal. It has been growing at a fast pace while showing unbelievable growth and achievements at times. In comparison to the traditional methods used in the biotechnology industry, AI-based methods seem more reliable and accurate. In the upcoming years, it will show its success by improving the quality of health people have. You can also develop your AI-based application or know more about it by taking IT consultations.

Read More
Medical

2 Small-Cap Biotech Stocks You Haven't Heard of, But Should Know About

Article | July 14, 2022

With everything that's going on with the COVID-19 pandemic, many healthcare companies have grabbed plenty of spotlight during these challenging times. At the same time, a number of otherwise promising businesses have slipped under the radar. That's especially true for small-cap biotech stocks that aren't actively involved in developing tests, vaccines or treatments for COVID-19. Vaccine developers, protective equipment producers, and healthcare service providers are all attracting plenty of attention during this pandemic, but there are just as many promising biotech stocks that aren't involved in these areas. Here are two such companies that you might have missed, but they deserve a spot on your watch list.

Read More
MedTech

5 Biotech Stocks Winning the Coronavirus Race

Article | July 16, 2022

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More
Diagnostics

Making Predictions by Digitizing Bioprocessing

Article | April 20, 2021

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More

Spotlight

C4 Therapeutics, Inc.

C4 Therapeutics is an early stage a drug discovery company whose mission is to harness targeted protein degradation to develop therapeutics for a broad range of diseases. The centerpiece of our approach is the Degronimid® platform, which enables highly selective small molecule binders to target disease causing proteins and facilitate their rapid destruction and clearance from the cell through the natural ubiquitin/proteasome system

Related News

CRISPR Therapeutics, Vertex Report First Data from Trials of Gene-Editing Treatment CTX001

GEN | November 19, 2019

CRISPR Therapeutics and Vertex Pharmaceuticals today reported preliminary, mostly-positive safety and efficacy data from the first two patients enrolled in two Phase I/II trials assessing their CRISPR/Cas9 gene-edited therapy CTX001 for a pair of blood disorders—the first clinical trial of a gene-editing candidate sponsored by U.S. companies. “We are very encouraged by these preliminary data, the first such data to be reported for patients with beta thalassemia and sickle cell disease treated with our CRISPR/Cas9 edited autologous hematopoietic stem cell candidate CTX001,” CRISPR Therapeutics CEO Samarth Kulkarni, PhD, said in a statement. “These data support our belief in the potential of our therapies to have meaningful benefit for patients following a one-time intervention. We continue to enroll these studies as we drive forward to develop CRISPR/Cas9 therapies as a new class of transformative medicines to treat serious diseases.” Added Vertex Chairman, President and CEO Jeffrey Leiden, MD, PhD: “The data we announced today are remarkable and demonstrate that CTX001 has the potential to be a curative CRISPR/Cas9-based gene-editing therapy.”

Read More

CRISPR Gene Editing Ability Improved by Specific Modifications of tracrRNA

GEN | November 11, 2019

Scientists at the City of Hope believe they may have found a way to sharpen the fastest, cheapest, and most accurate gene editing technique, CRISPR-Cas9, so that it can more successfully cut out undesirable genetic information. This improved cutting ability could one day fast-track potential therapies for HIV, sickle cell disease, and, potentially, other immune conditions. “Our CRISPR-Cas9 design may be the difference between trying to cut a ribeye steak with a butter knife versus slicing it with a steak knife,” said Tristan Scott, PhD, lead author of the study and a staff research scientist at City of Hope’s Center for Gene Therapy. “Other scientists have tried to improve CRISPR cutting through chemical modifications, but that’s an expensive process and is like diamond-coating a blade. Instead, we have designed a better pair of scissors you can buy at any convenience store.” The study, “Improved Cas9 activity by specific modifications of the tracrRNA,” published in Scientific Reports is the first time scientists have systematically gone through the guide RNA sequence to change it and improve CRISPR-Cas9 technology, Scott said. The Kevin Morris Lab at City of Hope has filed a patent application claiming this improved CRISPR-Cas9 design, which could result in a doubling of activity but the exact amount was dependent on the target site, Scott said.

Read More

A Breath of Fresh CRISPR

GEN | November 04, 2019

Genome editing materials can’t just breeze into cells. Or can they? Even cells so well defended as lung and airway cells may admit wisps of genome editing proteins such as CRISPR-associated nucleases. All that’s needed is an inspired delivery method. One possibility is the aerosolization of amphiphilic peptides. Amphiphilic peptides combine hydrophilic and lipophilic properties and facilitate the translocation of proteins across membranes. These peptides are being evaluated for various applications, including genome editing. In fact, scientists from the University of Iowa, in collaboration with scientists from Feldan Therapeutics, recently used engineered amphiphilic peptides to deliver genome editing nucleases and ribonucleoproteins to cultured human airway epithelial cells and mouse lungs.

Read More

CRISPR Therapeutics, Vertex Report First Data from Trials of Gene-Editing Treatment CTX001

GEN | November 19, 2019

CRISPR Therapeutics and Vertex Pharmaceuticals today reported preliminary, mostly-positive safety and efficacy data from the first two patients enrolled in two Phase I/II trials assessing their CRISPR/Cas9 gene-edited therapy CTX001 for a pair of blood disorders—the first clinical trial of a gene-editing candidate sponsored by U.S. companies. “We are very encouraged by these preliminary data, the first such data to be reported for patients with beta thalassemia and sickle cell disease treated with our CRISPR/Cas9 edited autologous hematopoietic stem cell candidate CTX001,” CRISPR Therapeutics CEO Samarth Kulkarni, PhD, said in a statement. “These data support our belief in the potential of our therapies to have meaningful benefit for patients following a one-time intervention. We continue to enroll these studies as we drive forward to develop CRISPR/Cas9 therapies as a new class of transformative medicines to treat serious diseases.” Added Vertex Chairman, President and CEO Jeffrey Leiden, MD, PhD: “The data we announced today are remarkable and demonstrate that CTX001 has the potential to be a curative CRISPR/Cas9-based gene-editing therapy.”

Read More

CRISPR Gene Editing Ability Improved by Specific Modifications of tracrRNA

GEN | November 11, 2019

Scientists at the City of Hope believe they may have found a way to sharpen the fastest, cheapest, and most accurate gene editing technique, CRISPR-Cas9, so that it can more successfully cut out undesirable genetic information. This improved cutting ability could one day fast-track potential therapies for HIV, sickle cell disease, and, potentially, other immune conditions. “Our CRISPR-Cas9 design may be the difference between trying to cut a ribeye steak with a butter knife versus slicing it with a steak knife,” said Tristan Scott, PhD, lead author of the study and a staff research scientist at City of Hope’s Center for Gene Therapy. “Other scientists have tried to improve CRISPR cutting through chemical modifications, but that’s an expensive process and is like diamond-coating a blade. Instead, we have designed a better pair of scissors you can buy at any convenience store.” The study, “Improved Cas9 activity by specific modifications of the tracrRNA,” published in Scientific Reports is the first time scientists have systematically gone through the guide RNA sequence to change it and improve CRISPR-Cas9 technology, Scott said. The Kevin Morris Lab at City of Hope has filed a patent application claiming this improved CRISPR-Cas9 design, which could result in a doubling of activity but the exact amount was dependent on the target site, Scott said.

Read More

A Breath of Fresh CRISPR

GEN | November 04, 2019

Genome editing materials can’t just breeze into cells. Or can they? Even cells so well defended as lung and airway cells may admit wisps of genome editing proteins such as CRISPR-associated nucleases. All that’s needed is an inspired delivery method. One possibility is the aerosolization of amphiphilic peptides. Amphiphilic peptides combine hydrophilic and lipophilic properties and facilitate the translocation of proteins across membranes. These peptides are being evaluated for various applications, including genome editing. In fact, scientists from the University of Iowa, in collaboration with scientists from Feldan Therapeutics, recently used engineered amphiphilic peptides to deliver genome editing nucleases and ribonucleoproteins to cultured human airway epithelial cells and mouse lungs.

Read More

Events