How Does Cold Plasma Enhance Seed Germination and Plant Growth?

When we think about the greatest threat facing humanity, we tend to picture climate change and antibiotic resistance, not what we are going to have for dinner. But the truth is, our need for food poses one of the biggest challenges to the planet. According to an estimate by the Food and Agricultural Organization of the United Nations (FAO), by 2050 the world’s population will reach 9.1 billion – almost all of this increase will occur in developing countries (1). To feed that many people, world food production will need to increase vastly, and food production in the developing world will need to double. By 2050 we will need to feed two billion more people. Is there a way to do that?

Spotlight

Drug Discovery Center of Innovation

The Drug Discovery Center of Innovation (DDCOI) provides pharmaceutical expertise and project management resources to accelerate the translation of discoveries into therapeutics. We offer a non-profit alternative to more traditional approaches to early drug development, with a focus on cost-efficient execution of development tasks, rather than the creation of infrastructure. Our deep pharmaceutical development experts establish and manage project plans, and provide end-to-end data analysis and troubleshooting to facilitate the creation of a successful application for IND and beyond.

OTHER ARTICLES
MedTech

Making Predictions by Digitizing Bioprocessing

Article | October 7, 2022

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More
MedTech

Next-Gen Gene Therapy to Counter Complex Diseases

Article | September 22, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
Medical

2 Small-Cap Biotech Stocks You Haven't Heard of, But Should Know About

Article | August 16, 2022

With everything that's going on with the COVID-19 pandemic, many healthcare companies have grabbed plenty of spotlight during these challenging times. At the same time, a number of otherwise promising businesses have slipped under the radar. That's especially true for small-cap biotech stocks that aren't actively involved in developing tests, vaccines or treatments for COVID-19. Vaccine developers, protective equipment producers, and healthcare service providers are all attracting plenty of attention during this pandemic, but there are just as many promising biotech stocks that aren't involved in these areas. Here are two such companies that you might have missed, but they deserve a spot on your watch list.

Read More
Research

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | July 11, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More

Spotlight

Drug Discovery Center of Innovation

The Drug Discovery Center of Innovation (DDCOI) provides pharmaceutical expertise and project management resources to accelerate the translation of discoveries into therapeutics. We offer a non-profit alternative to more traditional approaches to early drug development, with a focus on cost-efficient execution of development tasks, rather than the creation of infrastructure. Our deep pharmaceutical development experts establish and manage project plans, and provide end-to-end data analysis and troubleshooting to facilitate the creation of a successful application for IND and beyond.

Related News

RNA-protein network may explain why melanoma grows more

Phys.org | October 29, 2018

With five-year survival rates being around 30 percent for patients with distant metastatic disease, cutaneous melanoma is the leading cause of skin cancer-related deaths. The major causes of the low survival rate for melanoma patients are the limited number of options for patients lacking the BRAF mutation and the intrinsic and acquired resistance to existing therapies. It is therefore essential to develop new therapeutic strategies to eradicate resistant cells and/or target patients irrespective of their driver mutations. A collaboration led by scientists from KU Leuven, Belgium, with Tokyo University of Agriculture and Technology (TUAT), Japan, revealed a new way to fight melanoma. They report that a melanoma-specific long non-coding RNA, named SAMMSON, interacts with the protein CARF to properly coordinate protein synthesis in both the cytosol and mitochondria of melanoma cells. This mechanism ensures the maintenance of proteostasis during cell growth, thus avoiding the induction of cell death.

Read More

Study reveals best use of wildflowers to benefit crops on farms

Phys.org | October 16, 2018

With bee pollinators in decline and pesky crop pests lowering yields, sustainable and organic farmers need environmentally friendly solutions. One strategy is to border crops with wildflower plantings to attract pollinators and pest predators. But scientists have suggested that such plantings may only be effective when farms are surrounded by the right mix of natural habitat and agricultural land. For the first time, a Cornell University study of strawberry crops on New York farms tested this theory and found that wildflower strips on farms added pollinators when the farm lay within a "Goldilocks zone," where 25 to 55 percent of the surrounding area contained natural lands. Outside this zone, flower plantings also drew more strawberry pests, while having no effect on wasps that kill those pests.

Read More

The government is going to counter ‘misinformation’ about GMO foods

bioteh | May 03, 2017

The Food and Drug Administration will fund a campaign to promote genetically modified organisms in food under a bipartisan agreement to keep the government funded through the end of September.

Read More

RNA-protein network may explain why melanoma grows more

Phys.org | October 29, 2018

With five-year survival rates being around 30 percent for patients with distant metastatic disease, cutaneous melanoma is the leading cause of skin cancer-related deaths. The major causes of the low survival rate for melanoma patients are the limited number of options for patients lacking the BRAF mutation and the intrinsic and acquired resistance to existing therapies. It is therefore essential to develop new therapeutic strategies to eradicate resistant cells and/or target patients irrespective of their driver mutations. A collaboration led by scientists from KU Leuven, Belgium, with Tokyo University of Agriculture and Technology (TUAT), Japan, revealed a new way to fight melanoma. They report that a melanoma-specific long non-coding RNA, named SAMMSON, interacts with the protein CARF to properly coordinate protein synthesis in both the cytosol and mitochondria of melanoma cells. This mechanism ensures the maintenance of proteostasis during cell growth, thus avoiding the induction of cell death.

Read More

Study reveals best use of wildflowers to benefit crops on farms

Phys.org | October 16, 2018

With bee pollinators in decline and pesky crop pests lowering yields, sustainable and organic farmers need environmentally friendly solutions. One strategy is to border crops with wildflower plantings to attract pollinators and pest predators. But scientists have suggested that such plantings may only be effective when farms are surrounded by the right mix of natural habitat and agricultural land. For the first time, a Cornell University study of strawberry crops on New York farms tested this theory and found that wildflower strips on farms added pollinators when the farm lay within a "Goldilocks zone," where 25 to 55 percent of the surrounding area contained natural lands. Outside this zone, flower plantings also drew more strawberry pests, while having no effect on wasps that kill those pests.

Read More

The government is going to counter ‘misinformation’ about GMO foods

bioteh | May 03, 2017

The Food and Drug Administration will fund a campaign to promote genetically modified organisms in food under a bipartisan agreement to keep the government funded through the end of September.

Read More

Events