How Does Cold Plasma Enhance Seed Germination and Plant Growth?

AGATA LOS | October 15, 2019 | 24 views

When we think about the greatest threat facing humanity, we tend to picture climate change and antibiotic resistance, not what we are going to have for dinner. But the truth is, our need for food poses one of the biggest challenges to the planet. According to an estimate by the Food and Agricultural Organization of the United Nations (FAO), by 2050 the world’s population will reach 9.1 billion – almost all of this increase will occur in developing countries (1). To feed that many people, world food production will need to increase vastly, and food production in the developing world will need to double. By 2050 we will need to feed two billion more people. Is there a way to do that?

Spotlight

Innovotech Inc.

Innovotech is a pioneer in the field of biofilm product development, focused on providing innovative and practical solutions to medical, agricultural and industrial problems caused by microbial biofilms.

OTHER ARTICLES
MEDTECH

Next-Gen Gene Therapy to Counter Complex Diseases

Article | July 16, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
MEDTECH

Expansion of BioPharma: Opportunities and Investments

Article | July 11, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
MEDICAL

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | July 14, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More
MEDTECH

Biotech in 2022

Article | July 11, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More

Spotlight

Innovotech Inc.

Innovotech is a pioneer in the field of biofilm product development, focused on providing innovative and practical solutions to medical, agricultural and industrial problems caused by microbial biofilms.

Related News

RNA-protein network may explain why melanoma grows more

Phys.org | October 29, 2018

With five-year survival rates being around 30 percent for patients with distant metastatic disease, cutaneous melanoma is the leading cause of skin cancer-related deaths. The major causes of the low survival rate for melanoma patients are the limited number of options for patients lacking the BRAF mutation and the intrinsic and acquired resistance to existing therapies. It is therefore essential to develop new therapeutic strategies to eradicate resistant cells and/or target patients irrespective of their driver mutations. A collaboration led by scientists from KU Leuven, Belgium, with Tokyo University of Agriculture and Technology (TUAT), Japan, revealed a new way to fight melanoma. They report that a melanoma-specific long non-coding RNA, named SAMMSON, interacts with the protein CARF to properly coordinate protein synthesis in both the cytosol and mitochondria of melanoma cells. This mechanism ensures the maintenance of proteostasis during cell growth, thus avoiding the induction of cell death.

Read More

Study reveals best use of wildflowers to benefit crops on farms

Phys.org | October 16, 2018

With bee pollinators in decline and pesky crop pests lowering yields, sustainable and organic farmers need environmentally friendly solutions. One strategy is to border crops with wildflower plantings to attract pollinators and pest predators. But scientists have suggested that such plantings may only be effective when farms are surrounded by the right mix of natural habitat and agricultural land. For the first time, a Cornell University study of strawberry crops on New York farms tested this theory and found that wildflower strips on farms added pollinators when the farm lay within a "Goldilocks zone," where 25 to 55 percent of the surrounding area contained natural lands. Outside this zone, flower plantings also drew more strawberry pests, while having no effect on wasps that kill those pests.

Read More

The government is going to counter ‘misinformation’ about GMO foods

bioteh | May 03, 2017

The Food and Drug Administration will fund a campaign to promote genetically modified organisms in food under a bipartisan agreement to keep the government funded through the end of September.

Read More

RNA-protein network may explain why melanoma grows more

Phys.org | October 29, 2018

With five-year survival rates being around 30 percent for patients with distant metastatic disease, cutaneous melanoma is the leading cause of skin cancer-related deaths. The major causes of the low survival rate for melanoma patients are the limited number of options for patients lacking the BRAF mutation and the intrinsic and acquired resistance to existing therapies. It is therefore essential to develop new therapeutic strategies to eradicate resistant cells and/or target patients irrespective of their driver mutations. A collaboration led by scientists from KU Leuven, Belgium, with Tokyo University of Agriculture and Technology (TUAT), Japan, revealed a new way to fight melanoma. They report that a melanoma-specific long non-coding RNA, named SAMMSON, interacts with the protein CARF to properly coordinate protein synthesis in both the cytosol and mitochondria of melanoma cells. This mechanism ensures the maintenance of proteostasis during cell growth, thus avoiding the induction of cell death.

Read More

Study reveals best use of wildflowers to benefit crops on farms

Phys.org | October 16, 2018

With bee pollinators in decline and pesky crop pests lowering yields, sustainable and organic farmers need environmentally friendly solutions. One strategy is to border crops with wildflower plantings to attract pollinators and pest predators. But scientists have suggested that such plantings may only be effective when farms are surrounded by the right mix of natural habitat and agricultural land. For the first time, a Cornell University study of strawberry crops on New York farms tested this theory and found that wildflower strips on farms added pollinators when the farm lay within a "Goldilocks zone," where 25 to 55 percent of the surrounding area contained natural lands. Outside this zone, flower plantings also drew more strawberry pests, while having no effect on wasps that kill those pests.

Read More

The government is going to counter ‘misinformation’ about GMO foods

bioteh | May 03, 2017

The Food and Drug Administration will fund a campaign to promote genetically modified organisms in food under a bipartisan agreement to keep the government funded through the end of September.

Read More

Events