How Can AI Be Used For Clinical Trials?

The continuous innovation of technology is changing the way companies operate across different sectors. In particular, big data and artificial intelligence (AI) are expected to have the most significant impact. In this post, we’ll discuss how big data and AI can be used to support clinical trials in a variety of ways.

Spotlight

Compugen Ltd

Compugen is a leading drug discovery company focused on therapeutic proteins and monoclonal antibodies to address important unmet needs in the fields of immunology and oncology. The Company utilizes a broad and continuously growing integrated infrastructure of proprietary scientific understandings and predictive platforms, algorithms, machine learning systems and other computational biology capabilities for the in silico (by computer) prediction and selection of product candidates, which are then advanced in its Pipeline Program.

OTHER ARTICLES
MedTech

Next-Gen Gene Therapy to Counter Complex Diseases

Article | July 13, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
MedTech

Making Predictions by Digitizing Bioprocessing

Article | July 11, 2022

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More
Research

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | July 11, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More
MedTech

Expansion of BioPharma: Opportunities and Investments

Article | July 12, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More

Spotlight

Compugen Ltd

Compugen is a leading drug discovery company focused on therapeutic proteins and monoclonal antibodies to address important unmet needs in the fields of immunology and oncology. The Company utilizes a broad and continuously growing integrated infrastructure of proprietary scientific understandings and predictive platforms, algorithms, machine learning systems and other computational biology capabilities for the in silico (by computer) prediction and selection of product candidates, which are then advanced in its Pipeline Program.

Related News

Cell and Gene Therapy, Diagnostics

NorthX Biologics, a leading Nordic development and manufacturing organisation announces acquisition of a biologics manufacturing unit from Valneva

Globenewswire | July 04, 2023

NorthX Biologics (‘NorthX’), a leading Nordic development and manufacturing organisation with a focus on advanced biologics, CGT (cell and gene therapy) and vaccines, announced today the successful acquisition of the Stockholm-based Clinical Trial Manufacturing unit from Valneva Sweden, significantly expanding capabilities. The acquisition includes the transfer of a multi-purpose facility, situated in the Stockholm life science cluster, close to Karolinska University Hospital. In addition, 30 staff members who currently operate the facility will also join NorthX. The site and staff have a long history with extensive experience of serving both Valneva internally and also working with external customers on a contract development and manufacturing basis. With expertise in mammalian expression systems and viral vectors, the capabilities complement those of NorthX’s existing business of advanced microbial based manufacturing of proteins and plasmid DNA. The acquired unit excels in process development, scale up, GMP production, quality control analytics, and quality assurance/release and is capable of working with Biosafety Level (BSL) 2/2+ and BSL 3 organisms. With this expansion, NorthX enhances its capabilities and can offer comprehensive services to a wider range of clients globally. Janet Hoogstraate, currently Managing Director of Valneva Sweden, will join the NorthX team. She commented, “I am very proud when looking back at what we have achieved within the unit over the past years and look forward with great enthusiasm to build on NorthX’s position as the go-to manufacturer of advanced biologics in Northern Europe.” Helena Strigård, CEO of NorthX, said, “We are delighted to join forces with our new colleagues in Stockholm to bring new innovative treatments to tomorrow’s patients.” Thomas Eldered, Chairman of NorthX, commented, “This strategic move marks a significant milestone in our growth journey and strengthens NorthX as Sweden’s Innovation Hub. We are now able to work with ATMPs and advanced biologics, including process development and manufacture for clinical trials and commercial requirements.” ABOUT NORTHX BIOLOGICS NorthX Biologics develops and manufactures advanced biologics and has over 30 years of GMP production experience. The team provides process development and GMP manufacturing services with expertise in plasmid DNA, mRNA, proteins, cell therapy and other advanced biologics. Headquartered in the heart of Sweden, the team serves customers worldwide. In 2021 NorthX was recognised and appointed as the national innovation hub for GMP manufacture of advanced therapeutics and vaccines by the Swedish Government and Vinnova, Sweden's innovation agency. NorthX has the ambition to become a leading cell and gene therapy manufacturer and partner of choice for innovative drug development companies. For more information visit www.nxbio.com.

Read More

Research, Diagnostics

Xilio Therapeutics Releases Preliminary Results of XTX101 Phase 1 Trial

Globenewswire | May 26, 2023

Xilio Therapeutics, Inc. (Nasdaq: XLO), a clinical-stage biotechnology company discovering and developing tumor-activated immuno-oncology therapies for people living with cancer, today announced preliminary data from its Phase 1 clinical trial evaluating XTX101, an investigational tumor-activated, Fc-enhanced anti-CTLA-4, in patients with advanced solid tumors. “We are encouraged by the preliminary data from the Phase 1 trial for XTX101 showing evidence of tumor-selective activation,” said Martin Huber, M.D., president and head of research and development at Xilio. “Following treatment with XTX101 monotherapy at the recommended Phase 2 dose of 150 mg once every six weeks, we observed a partial response in a patient with PD-L1 negative advanced non-small cell lung cancer. Importantly, this anti-tumor activity occurred in the absence of meaningful observed activation of the immune system in the periphery, suggesting tumor-selective activation of XTX101. Based on these Phase 1 data, we plan to explore opportunities to evaluate XTX101 in combination with an anti-PD-(L)1 in historically immunotherapy-resistant tumor types.” Data from the Ongoing Phase 1 Clinical Trial for XTX101 As of a data cutoff date of May 2, 2023, 25 patients had been treated with XTX101, including dose levels ranging from 7 mg to 180 mg administered once every three weeks (Q3W) and one dose level at 150 mg administered once every six weeks (Q6W). Of these patients, 20 patients were dosed in monotherapy dose-escalation (Part 1A) and five patients were dosed in monotherapy dose-expansion (Part 1B). Patients had a wide range of advanced and treatment-refractory solid tumors, including colorectal cancer (CRC), non-small cell lung cancer (NSCLC) and pancreatic cancer. In addition, 76% of patients had been previously treated with at least three prior lines of anti-cancer therapy, and 44% had been previously treated with at least one immuno-oncology (I-O) agent. As of the data cutoff date, three patients were continuing on treatment with XTX101, and 22 patients had discontinued treatment with XTX101. Preliminary Safety Data A recommended Phase 2 dose (RP2D) and schedule of 150 mg Q6W was determined based on the favorable preliminary safety, pharmacokinetic (PK) and pharmacodynamic (PD) data for XTX101. At the RP2D, no dose-limiting toxicities were observed, and there was no reported evidence of immune-related endocrine or skin adverse events (AEs) that are commonly associated with systemically active anti-CTLA-4 agents. In addition, evidence of effective masking of XTX101 was demonstrated by low levels of unmasked drug detected in peripheral circulation, and XTX101 achieved target PK exposure at the RP2D, reaching the targeted area under the curve (AUC) and peak concentration (Cmax). As of the data cutoff date: Across all dosing levels and dosing intervals, no Grade 4 or Grade 5 treatment-related AEs were reported by investigators. Among seven patients who received XTX101 administered at the RP2D of 150 mg on a Q6W dosing schedule, the most common treatment-related AEs (≥10% incidence) of any grade reported by investigators were diarrhea (14%), fatigue (14%) and decreased appetite (14%). In these patients, no treatment-related colitis or infusion related reaction of any grade was observed. Investigators reported only one Grade 3 treatment-related AE of diarrhea, which occurred after two doses and resolved after five days without steroid use. This patient tolerated two additional doses of XTX101 after dose reduction to 75 mg Q6W without any symptom recurrence. At the RP2D of 150 mg Q6W, this was the only patient with a dose reduction due to an AE, and no patients discontinued treatment due to a treatment-related AE. Among 18 patients who received XTX101 administered on a Q3W dosing schedule, the most common treatment-related AEs (≥10% incidence) of any grade reported by investigators were diarrhea (28%), colitis (28%), infusion related reaction (28%), nausea (17%), vomiting (17%) and abdominal pain (11%). Of these, investigators reported the following Grade 3 treatment-related AEs: diarrhea (6%), colitis (22%) and infusion related reaction (17%). Infusion related reactions were associated with antidrug antibodies. Across all dose levels administered Q3W, two patients had dose reductions due to AEs, and four patients discontinued treatment due to an infusion related reaction. Preliminary Anti-Tumor Activity A partial response was observed at nine weeks in one patient with advanced PD-L1 negative NSCLC with hepatic metastases treated with XTX101 at the 150 mg Q6W dose level and confirmed after the data cutoff date at week 27. The only treatment-related AE reported for this patient was Grade 1 fatigue. In addition, PD markers for anti-CTLA-4 reported for this patient showed minimal immune activation in peripheral circulation, demonstrating evidence of tumor-selective activation of XTX101. The patient is currently continuing on treatment with XTX101. Clinical Development Plan for XTX101 Enrollment in monotherapy dose-expansion (Part 1B) of the Phase 1 trial is currently ongoing, with the goal of further characterizing the safety, PK and PD of XTX101 at the RP2D of 150 mg Q6W. In addition, mandatory tumor biopsies will be obtained from patients in Part 1B to examine intra-tumoral PK and PD for XTX101. Xilio plans to continue to explore strategic opportunities to advance XTX101 with a partner beyond the current Phase 1 monotherapy cohorts, including in potential Phase 1 dose escalation evaluating XTX101 in combination with a PD-(L)1 and in a potential Phase 2 trial evaluating XTX101 in combination with a PD-(L)1 in patients with microsatellite stable CRC. About XTX101 (anti-CTLA-4) and the Phase 1 Clinical Trial XTX101 is an investigational tumor-activated, Fc-enhanced anti-CTLA-4 monoclonal antibody designed to deplete regulatory T cells when activated (unmasked) in the tumor microenvironment (TME). The Phase 1 clinical trial is a first-in-human, multi-center, open-label trial designed to evaluate the safety and tolerability of XTX101 for the treatment of patients with advanced solid tumors. The primary outcome measures were the incidence of dose-limiting toxicities (DLTs) and the incidence of treatment-related adverse events, and changes in clinical laboratory abnormalities. Please refer to NCT04896697 on www.clinicaltrials.gov for additional details. About Xilio Therapeutics Xilio Therapeutics is a clinical-stage biotechnology company discovering and developing tumor-activated immuno-oncology (I-O) therapies with the goal of significantly improving outcomes for people living with cancer without the systemic side effects of current I-O treatments. The company is using its proprietary geographically precise solutions (GPS) platform to build a pipeline of novel, tumor-activated molecules, including cytokines and other biologics, which are designed to optimize their therapeutic index and localize anti-tumor activity within the tumor microenvironment. Xilio is currently advancing multiple programs for tumor-activated I-O treatments in clinical development, as well as programs in preclinical development. Learn more by visiting www.xiliotx.com and follow us on Twitter (@xiliotx) and LinkedIn (Xilio Therapeutics, Inc.).

Read More

Cell and Gene Therapy

Matica Bio Announces Joint Research Agreement with Sartorius for the Development of Advanced Viral Vector Manufacturing Technology

Matica Biotechnology, Inc. | October 19, 2021

Matica Biotechnology, Inc, (Matica Bio) a contract development and manufacturing organization (CDMO) specializing in the clinical and commercial production of cell and gene therapies, today announced a joint research agreement (JRA) with Sartorius, a leading international partner of the biopharmaceutical industry. Under this agreement, Matica Bio and Sartorius will work on a number of studies together to streamline and optimize PAT technologies, automation software, and single-use platforms offered by Sartorius for large scale vector production. Michael Stewart, Chief Technology Officer at Matica Bio explained, "The generation of in-line real-time process data is one of the most significant obstacles to achieving consistent, high-producing viral vector titers during development that can be translatable to large scale production. In many respects, what is going on inside a bioreactor or within downstream operations is still a black box to us." Mr. Stewart continued, "Matica Bio's development, manufacturing and quality teams have decades of viral vector production experience. Applying our expertise together with Sartorius' industry-leading single-use and PAT technologies will allow us to provide more robust, consistent results for our clients, guiding informed decision-making throughout the manufacturing process and accelerating the overall development timeline to the clinic and market." "We are extremely excited to initiate this partnership with Sartorius. Our number one priority is to deliver for our clients. Our expert staff will be working to integrate more fully automated processes leading to an increase in the speed of information flow and a reduction in preventable errors. The end result will be increased product yields, higher quality as well as improved flexibility and responsiveness to our clients' ever-changing needs." Dr. Yun Jeong Song, Chief Executive Officer of Matica Bio The JRA with Sartorius underscores Matica Bio's commitment to applying integrated technology and bioprocess solutions to address production complexities like reduction of labor and risk while improving output efficiencies in the production of advanced therapies, including viral vector products. Together Sartorius and Matica Bio are dedicated to solving the challenges of large-scale cell culture and viral vector production, improving manufacturability and reducing the costs of novel cell and gene therapies, oncolytic vectors and vaccines. About Matica Biotechnology, Inc. Matica Bio is a contract development and manufacturing organization for gene therapies, cell therapies, vaccines, oncolytic vectors and other advanced biotherapeutic products. Our GMP facility in College Station, TX is designed for the rapid development, scale-up and production of clinical and commercial supply. Matica Bio offers process development, GMP production, product release and stability assessment, together with the quality oversight and regulatory guidance necessary to ensure our clients' success.

Read More

Cell and Gene Therapy, Diagnostics

NorthX Biologics, a leading Nordic development and manufacturing organisation announces acquisition of a biologics manufacturing unit from Valneva

Globenewswire | July 04, 2023

NorthX Biologics (‘NorthX’), a leading Nordic development and manufacturing organisation with a focus on advanced biologics, CGT (cell and gene therapy) and vaccines, announced today the successful acquisition of the Stockholm-based Clinical Trial Manufacturing unit from Valneva Sweden, significantly expanding capabilities. The acquisition includes the transfer of a multi-purpose facility, situated in the Stockholm life science cluster, close to Karolinska University Hospital. In addition, 30 staff members who currently operate the facility will also join NorthX. The site and staff have a long history with extensive experience of serving both Valneva internally and also working with external customers on a contract development and manufacturing basis. With expertise in mammalian expression systems and viral vectors, the capabilities complement those of NorthX’s existing business of advanced microbial based manufacturing of proteins and plasmid DNA. The acquired unit excels in process development, scale up, GMP production, quality control analytics, and quality assurance/release and is capable of working with Biosafety Level (BSL) 2/2+ and BSL 3 organisms. With this expansion, NorthX enhances its capabilities and can offer comprehensive services to a wider range of clients globally. Janet Hoogstraate, currently Managing Director of Valneva Sweden, will join the NorthX team. She commented, “I am very proud when looking back at what we have achieved within the unit over the past years and look forward with great enthusiasm to build on NorthX’s position as the go-to manufacturer of advanced biologics in Northern Europe.” Helena Strigård, CEO of NorthX, said, “We are delighted to join forces with our new colleagues in Stockholm to bring new innovative treatments to tomorrow’s patients.” Thomas Eldered, Chairman of NorthX, commented, “This strategic move marks a significant milestone in our growth journey and strengthens NorthX as Sweden’s Innovation Hub. We are now able to work with ATMPs and advanced biologics, including process development and manufacture for clinical trials and commercial requirements.” ABOUT NORTHX BIOLOGICS NorthX Biologics develops and manufactures advanced biologics and has over 30 years of GMP production experience. The team provides process development and GMP manufacturing services with expertise in plasmid DNA, mRNA, proteins, cell therapy and other advanced biologics. Headquartered in the heart of Sweden, the team serves customers worldwide. In 2021 NorthX was recognised and appointed as the national innovation hub for GMP manufacture of advanced therapeutics and vaccines by the Swedish Government and Vinnova, Sweden's innovation agency. NorthX has the ambition to become a leading cell and gene therapy manufacturer and partner of choice for innovative drug development companies. For more information visit www.nxbio.com.

Read More

Research, Diagnostics

Xilio Therapeutics Releases Preliminary Results of XTX101 Phase 1 Trial

Globenewswire | May 26, 2023

Xilio Therapeutics, Inc. (Nasdaq: XLO), a clinical-stage biotechnology company discovering and developing tumor-activated immuno-oncology therapies for people living with cancer, today announced preliminary data from its Phase 1 clinical trial evaluating XTX101, an investigational tumor-activated, Fc-enhanced anti-CTLA-4, in patients with advanced solid tumors. “We are encouraged by the preliminary data from the Phase 1 trial for XTX101 showing evidence of tumor-selective activation,” said Martin Huber, M.D., president and head of research and development at Xilio. “Following treatment with XTX101 monotherapy at the recommended Phase 2 dose of 150 mg once every six weeks, we observed a partial response in a patient with PD-L1 negative advanced non-small cell lung cancer. Importantly, this anti-tumor activity occurred in the absence of meaningful observed activation of the immune system in the periphery, suggesting tumor-selective activation of XTX101. Based on these Phase 1 data, we plan to explore opportunities to evaluate XTX101 in combination with an anti-PD-(L)1 in historically immunotherapy-resistant tumor types.” Data from the Ongoing Phase 1 Clinical Trial for XTX101 As of a data cutoff date of May 2, 2023, 25 patients had been treated with XTX101, including dose levels ranging from 7 mg to 180 mg administered once every three weeks (Q3W) and one dose level at 150 mg administered once every six weeks (Q6W). Of these patients, 20 patients were dosed in monotherapy dose-escalation (Part 1A) and five patients were dosed in monotherapy dose-expansion (Part 1B). Patients had a wide range of advanced and treatment-refractory solid tumors, including colorectal cancer (CRC), non-small cell lung cancer (NSCLC) and pancreatic cancer. In addition, 76% of patients had been previously treated with at least three prior lines of anti-cancer therapy, and 44% had been previously treated with at least one immuno-oncology (I-O) agent. As of the data cutoff date, three patients were continuing on treatment with XTX101, and 22 patients had discontinued treatment with XTX101. Preliminary Safety Data A recommended Phase 2 dose (RP2D) and schedule of 150 mg Q6W was determined based on the favorable preliminary safety, pharmacokinetic (PK) and pharmacodynamic (PD) data for XTX101. At the RP2D, no dose-limiting toxicities were observed, and there was no reported evidence of immune-related endocrine or skin adverse events (AEs) that are commonly associated with systemically active anti-CTLA-4 agents. In addition, evidence of effective masking of XTX101 was demonstrated by low levels of unmasked drug detected in peripheral circulation, and XTX101 achieved target PK exposure at the RP2D, reaching the targeted area under the curve (AUC) and peak concentration (Cmax). As of the data cutoff date: Across all dosing levels and dosing intervals, no Grade 4 or Grade 5 treatment-related AEs were reported by investigators. Among seven patients who received XTX101 administered at the RP2D of 150 mg on a Q6W dosing schedule, the most common treatment-related AEs (≥10% incidence) of any grade reported by investigators were diarrhea (14%), fatigue (14%) and decreased appetite (14%). In these patients, no treatment-related colitis or infusion related reaction of any grade was observed. Investigators reported only one Grade 3 treatment-related AE of diarrhea, which occurred after two doses and resolved after five days without steroid use. This patient tolerated two additional doses of XTX101 after dose reduction to 75 mg Q6W without any symptom recurrence. At the RP2D of 150 mg Q6W, this was the only patient with a dose reduction due to an AE, and no patients discontinued treatment due to a treatment-related AE. Among 18 patients who received XTX101 administered on a Q3W dosing schedule, the most common treatment-related AEs (≥10% incidence) of any grade reported by investigators were diarrhea (28%), colitis (28%), infusion related reaction (28%), nausea (17%), vomiting (17%) and abdominal pain (11%). Of these, investigators reported the following Grade 3 treatment-related AEs: diarrhea (6%), colitis (22%) and infusion related reaction (17%). Infusion related reactions were associated with antidrug antibodies. Across all dose levels administered Q3W, two patients had dose reductions due to AEs, and four patients discontinued treatment due to an infusion related reaction. Preliminary Anti-Tumor Activity A partial response was observed at nine weeks in one patient with advanced PD-L1 negative NSCLC with hepatic metastases treated with XTX101 at the 150 mg Q6W dose level and confirmed after the data cutoff date at week 27. The only treatment-related AE reported for this patient was Grade 1 fatigue. In addition, PD markers for anti-CTLA-4 reported for this patient showed minimal immune activation in peripheral circulation, demonstrating evidence of tumor-selective activation of XTX101. The patient is currently continuing on treatment with XTX101. Clinical Development Plan for XTX101 Enrollment in monotherapy dose-expansion (Part 1B) of the Phase 1 trial is currently ongoing, with the goal of further characterizing the safety, PK and PD of XTX101 at the RP2D of 150 mg Q6W. In addition, mandatory tumor biopsies will be obtained from patients in Part 1B to examine intra-tumoral PK and PD for XTX101. Xilio plans to continue to explore strategic opportunities to advance XTX101 with a partner beyond the current Phase 1 monotherapy cohorts, including in potential Phase 1 dose escalation evaluating XTX101 in combination with a PD-(L)1 and in a potential Phase 2 trial evaluating XTX101 in combination with a PD-(L)1 in patients with microsatellite stable CRC. About XTX101 (anti-CTLA-4) and the Phase 1 Clinical Trial XTX101 is an investigational tumor-activated, Fc-enhanced anti-CTLA-4 monoclonal antibody designed to deplete regulatory T cells when activated (unmasked) in the tumor microenvironment (TME). The Phase 1 clinical trial is a first-in-human, multi-center, open-label trial designed to evaluate the safety and tolerability of XTX101 for the treatment of patients with advanced solid tumors. The primary outcome measures were the incidence of dose-limiting toxicities (DLTs) and the incidence of treatment-related adverse events, and changes in clinical laboratory abnormalities. Please refer to NCT04896697 on www.clinicaltrials.gov for additional details. About Xilio Therapeutics Xilio Therapeutics is a clinical-stage biotechnology company discovering and developing tumor-activated immuno-oncology (I-O) therapies with the goal of significantly improving outcomes for people living with cancer without the systemic side effects of current I-O treatments. The company is using its proprietary geographically precise solutions (GPS) platform to build a pipeline of novel, tumor-activated molecules, including cytokines and other biologics, which are designed to optimize their therapeutic index and localize anti-tumor activity within the tumor microenvironment. Xilio is currently advancing multiple programs for tumor-activated I-O treatments in clinical development, as well as programs in preclinical development. Learn more by visiting www.xiliotx.com and follow us on Twitter (@xiliotx) and LinkedIn (Xilio Therapeutics, Inc.).

Read More

Cell and Gene Therapy

Matica Bio Announces Joint Research Agreement with Sartorius for the Development of Advanced Viral Vector Manufacturing Technology

Matica Biotechnology, Inc. | October 19, 2021

Matica Biotechnology, Inc, (Matica Bio) a contract development and manufacturing organization (CDMO) specializing in the clinical and commercial production of cell and gene therapies, today announced a joint research agreement (JRA) with Sartorius, a leading international partner of the biopharmaceutical industry. Under this agreement, Matica Bio and Sartorius will work on a number of studies together to streamline and optimize PAT technologies, automation software, and single-use platforms offered by Sartorius for large scale vector production. Michael Stewart, Chief Technology Officer at Matica Bio explained, "The generation of in-line real-time process data is one of the most significant obstacles to achieving consistent, high-producing viral vector titers during development that can be translatable to large scale production. In many respects, what is going on inside a bioreactor or within downstream operations is still a black box to us." Mr. Stewart continued, "Matica Bio's development, manufacturing and quality teams have decades of viral vector production experience. Applying our expertise together with Sartorius' industry-leading single-use and PAT technologies will allow us to provide more robust, consistent results for our clients, guiding informed decision-making throughout the manufacturing process and accelerating the overall development timeline to the clinic and market." "We are extremely excited to initiate this partnership with Sartorius. Our number one priority is to deliver for our clients. Our expert staff will be working to integrate more fully automated processes leading to an increase in the speed of information flow and a reduction in preventable errors. The end result will be increased product yields, higher quality as well as improved flexibility and responsiveness to our clients' ever-changing needs." Dr. Yun Jeong Song, Chief Executive Officer of Matica Bio The JRA with Sartorius underscores Matica Bio's commitment to applying integrated technology and bioprocess solutions to address production complexities like reduction of labor and risk while improving output efficiencies in the production of advanced therapies, including viral vector products. Together Sartorius and Matica Bio are dedicated to solving the challenges of large-scale cell culture and viral vector production, improving manufacturability and reducing the costs of novel cell and gene therapies, oncolytic vectors and vaccines. About Matica Biotechnology, Inc. Matica Bio is a contract development and manufacturing organization for gene therapies, cell therapies, vaccines, oncolytic vectors and other advanced biotherapeutic products. Our GMP facility in College Station, TX is designed for the rapid development, scale-up and production of clinical and commercial supply. Matica Bio offers process development, GMP production, product release and stability assessment, together with the quality oversight and regulatory guidance necessary to ensure our clients' success.

Read More

Events