Fulcrum Therapeutics Licenses Failed GSK Drug for Possible Muscular Dystrophy Indication

April 24, 2019 | 20 views

Based Fulcrum Therapeutics just acquired a worldwide license with GlaxoSmithKline (GSK) to develop and commercialize losmapimod. The drug was abandoned by GSK about three years ago after it failed in a late-stage myocardial infarction (heart attack) study. Fulcrum Therapeutics was one of BioSpace’s NextGen “Class of 2017” startup life sciences companies to watch.

Spotlight

Homewood Health

As Canada's leader in mental health and addiction services, we provide a continuum of stay at work, return to work and treatment services through our team of over 4,500 staff and clinical professionals. Homewood services focus on helping people and organizations get better. With over 130 years of experience in mental health and addictions, we create, innovate, and collaborate everyday to improve our care and improve lives

OTHER ARTICLES

Advancement in Genomics Accelerating its Penetration into Precision Health

Article | September 13, 2019

Genomics is an interdisciplinary field of biology emphasizing the structure, editing, evolution, function, and mapping of genomes. It is creating deeper inroads across the precision health domain with the increasing introduction of advanced technologies such as quantum simulation, next-generation sequencing (NGS), and precise genome manipulation. As precision health focuses on providing the proper intervention to the right patient at the right time, genomics increasingly finds applications in human and pathogen genome sequencing in clinical and research spaces. Rising Hereditary Diseases Burden Paving the Way for Genomics in Precision Health In the last few years, a significant surge in the prevalence of diseases and ailments such as diabetes, obesity, baldness, and others has been witnessed across the globe. A history of family members with chronic diseases, such as cancer, diabetes, high blood pressure, hearing issues, and heart disease, can sometimes continue into the next generation. Hence, the study of genes is extensively being conducted for predicting health risks and early treatment of these diseases. It also finds use in CRISPR-based diagnostics and the preparation of precision medication for the individual. In addition, ongoing advancements in genomics are making it possible to identify different genetic traits that persuade people to more widespread diseases and health problems. The Emergence of Genomics Improves Disease Understanding Genomics refers to the study of the complete genetic makeup of a cell or organism. Increasing scientific research in the area substantially contributes to increasing knowledge about the human genome and assists in improving the ability to understand disease etiology, risk, diagnosis, treatment, and prevention. On account of these improvements, innovative genomic technologies and tools are being developed to enable better precision health not only for the individual but for various regional populations as well. The Way Forward With growing preference for personalized medicine and an increasing need for more accurate pathogen detection and diagnostics, genomics is gaining huge popularity across the precision health domain. Also, increasing research activities for developing novel high-precision therapeutics and rising importance of gene study in the prevention, diagnosis, and management of infectious and genetic diseases will further pave the way for genomics in the forthcoming years.

Read More

Top 10 biotech IPOs in 2019

Article | April 17, 2020

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More

Cell Out? Lysate-Based Expression an Option for Personalized Meds

Article | April 9, 2020

Cell-free expression (CFE) is the practice of making a protein without using a living cell. In contrast with cell line-based methods, production is achieved using a fluid containing biological components extracted from a cell, i.e., a lysate. CFE offers potential advantages for biopharma according to Philip Probert, PhD, a senior scientist at the Centre for Process Innovation in the U.K.

Read More

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | February 12, 2020

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Spotlight

Homewood Health

As Canada's leader in mental health and addiction services, we provide a continuum of stay at work, return to work and treatment services through our team of over 4,500 staff and clinical professionals. Homewood services focus on helping people and organizations get better. With over 130 years of experience in mental health and addictions, we create, innovate, and collaborate everyday to improve our care and improve lives

Related News

MEDICAL

NiKang Therapeutics Completes $200 Million Series C Financing to Advance Highly Differentiated Small Molecules Addressing Difficult-to-Drug Targets

NiKang Therapeutics | May 31, 2021

NiKang Therapeutics Inc., a clinical-stage biotech company focused on developing innovative small molecule oncology medicines to assist patients with unmet medical needs; today announced the completion of an oversubscribed $200 million Series C financing led by Cormorant Asset Management, HBM Healthcare Investments, and Octagon Capital Advisors with participation from a premier syndicate of funds, including new investors EcoR1 Capital, Perceptive Advisors, Wellington Management, Ally Bridge Group, Pavilion Capital, funds and accounts managed by BlackRock, RA Capital Management, Surveyor Capital (a Citadel company), Samsara BioCapital, PFM Health Sciences, Invus, Janus Henderson Investors and Logos Capital. All existing investors, including CBC Group, RTW Investments, LP, Lilly Asia Ventures, Matrix Partners China, and Casdin Capital, participated in the financing. About the funding, Bing Yao, Ph.D., former CEO and chairman of Viela Bio, and Ting Jia, Ph.D., founder and chief investment officer of Octagon Capital Advisors, will join NiKang’s Board of Directors. “We are thrilled to have such an outstanding group of investors as our shareholders,” said Zhenhai Gao, Ph.D., co-founder, president, and chief executive officer of NiKang. “Their support of our vision allows us to build the world’s leading precision oncology company. We are now well-positioned to rapidly advance our pipeline into the clinic, including our differentiated HIF-2 alpha inhibitor, and to bring our company to the next level of growth.” “This financing is a testament to the quality of our science and team,” Kelsey Chen, Ph.D., MBA, chief financial officer, added. “Since joining NiKang, I have witnessed the passion and dedication of a group of talented scientists who are devoting their lives to advancing treatments for patients. We are grateful to be recognized by such a high-caliber group of investors.” “NiKang has made remarkable progress over the last eight months since our initial investment,” said Ting Jia, Ph.D., a chief investment officer of Octagon. “We are impressed by the team’s accomplishment. We believe NiKang’s unique approach to attacking difficult-to-drug targets offers promising opportunities to develop breakthrough treatments for cancer patients. We are excited to co-lead the series C financing and partner with the NiKang team to accelerate its growth.” “We are proud of what NiKang has achieved since its inception,” said Sean Cao, executive chairman of NiKang and managing director of CBC Group, which incubated the company. “The strength of this group of investors validates NiKang’s achievements and demonstrates their confidence in NiKang’s potential to grow into a leading innovative drug company.” Proceeds will be used to advance the company’s lead drug candidates into the clinic, expand the pipeline, and fund internal drug discovery programs. About NiKang Therapeutics NiKang Therapeutics is a clinical-stage biotech company focused on discovering and developing innovative small molecule oncology medicines to assist patients with unmet medical needs. Our target selection is driven by deep insights into disease biology and molecular pathways. Our discovery approach is informed by target structure biology and capitalizes on structure-based drug design. The successful implementation of our strategy enables us to rapidly and efficiently discover and advance proprietary drug candidates with the most desirable pharmacological features into clinical studies. We strive to bring transformative medicines to patients in need.

Read More

MEDICAL

TeselaGen Biotechnology Announced the Launch of a New Protein Optimization Toolkit for Automated Biotherapeutic Drug Design and Development

TeselaGen Biotechnology | May 21, 2021

TeselaGen Biotechnology today announced the launch of a new protein optimization toolkit for biotherapeutic drug design and development, introducing significant enhancements to the company’s flagship TeselaGen® OS to form designing and developing pharmaceuticals and biotherapeutics faster and fewer expensive. The new capabilities, easily accessible via the cloud-based platform, simplify the planning of highly complex combinatorial protein libraries and support AI models for optimizing new peptides and proteins. New application programming interfaces (APIs) and integration tools have also been extended to further enhance users’ access to the new capabilities. TeselaGen integrates the facility of AI with one end-to-end platform for design, construction, data gathering, and analysis of bioproduct performance, from pharmaceuticals to food and fabrics, significantly accelerating time to plug and reducing costs. The platform’s DESIGN, BUILD, TEST, and find out modules enable researchers to effectively collaborate across an organization's development pipeline to style and build experiments, standardize and share data, and learn and preserve project results by embedding them during a machine learning model. TeselaGen’s DESIGN is an intuitive, user-interface-driven module that permits scientists to style highly complex combinatorial libraries. With this new release, the planning now supports aminoalkanoic acid parts which will be efficiently mapped to DNA. TeselaGen can then automatically generate biology protocols for efficiently synthesizing and assembling the corresponding DNA libraries. TeselaGen’s DISCOVER now supports AI models which will recommend new peptides and proteins supported by the training of supervised and unsupervised learning models. The platform also supports the modeling of unnatural amino acids and multicriteria optimization of proteins. R&D groups can utilize the TeselaGen OS to hurry the invention process. Datasets are uploaded and arranged within the platform and immediately useful for model building within TeselaGen’s DISCOVER module. TeselaGen has demonstrated that it can increase the planning and build speed of biological products and reduce the prices related to research & development by an order of magnitude. Current partnering companies are using the new capabilities for designing antibodies and optimizing their binding affinity, titer, specific productivity, immunogenicity, or other phenotypic variables of interest. Researchers also are looking to TeselaGen for rapidly engineering new vaccines - using methods like virus-like particles (VLPs), DNA, and RNA vaccines - opening the door to attacking rapidly mutating RNA and retroviruses like influenza, HCV, HIV, or coronaviruses. About TeselaGen Biotechnology TeselaGen Biotechnology has developed the primary artificial intelligence-enabled OS for biotechnology, enabling the event and commercialization of high-performance bioproducts – from pharmaceuticals to food to fabrics – faster and easier than ever. TeselaGen® connects biologists, lab technicians, and bioinformaticians so that they will collaboratively design and build experiments, organize and standardize data then test and continually learn from the info. TeselaGen has been deployed by Fortune 50 companies and emerging innovators in biopharmaceuticals, agriculture, and specialty chemicals. the corporate is privately held and based in San Francisco, California.

Read More

AI

Iktos Partners with Kadmon to Use AI for New Drug Design

Iktos, Kadmon | May 19, 2021

Iktos, a company specializing in Artificial Intelligence for new drug design, announced today that it has signed a Research Collaboration Agreement with Kadmon, a clinical-stage biopharmaceutical company based in New York, USA, under which Iktos' generative modeling artificial intelligence (AI) technology will be used to allow the rapid and cost-effective design of novel drug candidates. Iktos will use its de novo structure-based generative modeling technologies to find novel compounds that meet a pre-defined target product profile as part of the deal, to speed up Kadmon's early-stage discovery efforts. Kadmon discovers, develops, and delivers small molecules and biologics for the treatment of human diseases. Intending to identify and develop new product candidates for significant unmet medical needs, Kadmon is expanding and incorporating novel drug discovery platforms. The AI technology developed by Iktos, which is focused on deep generative models, aids in the speed and efficiency of the drug discovery process. Iktos' technology creates virtual novel molecules that have all of the properties of a successful drug molecule automatically. This approach, which has been validated by Iktos' other collaborations, is an innovative approach to one of the most difficult problems in drug design: finding molecules that meet several important drug criteria at the same time, such as potency, selectivity, safety, and project-specific properties. Iktos' technology enables the creation of new hits with optimal protein-ligand interactions in early-stage discovery projects, as predicted by molecular modeling technology. This technique allows for a one-of-a-kind discovery of chemical space, as well as the development of innovative molecule designs with greater Freedom to Operate. Furthermore, allowing multi-parametric in silico optimization from the start of a project greatly reduces the hit finding and hit-to-lead optimization phases. About Iktos Iktos, a French start-up founded in October 2016, specializes in the development of artificial intelligence technologies for chemical research, especially medicinal chemistry, and new drug design. Iktos is working on a proprietary and innovative approach focused on deep learning generative models that allow users to build molecules in silico that follow all of the performance criteria of a small molecule discovery project using existing evidence. Iktos technology allows for significant efficiency gains in upstream pharmaceutical R&D. Iktos' software is utilized as both professional services and a SaaS software platform, Makya. Spaya, a synthesis planning software built on Iktos' proprietary AI technology for retrosynthesis, is also in the works.

Read More

MEDICAL

NiKang Therapeutics Completes $200 Million Series C Financing to Advance Highly Differentiated Small Molecules Addressing Difficult-to-Drug Targets

NiKang Therapeutics | May 31, 2021

NiKang Therapeutics Inc., a clinical-stage biotech company focused on developing innovative small molecule oncology medicines to assist patients with unmet medical needs; today announced the completion of an oversubscribed $200 million Series C financing led by Cormorant Asset Management, HBM Healthcare Investments, and Octagon Capital Advisors with participation from a premier syndicate of funds, including new investors EcoR1 Capital, Perceptive Advisors, Wellington Management, Ally Bridge Group, Pavilion Capital, funds and accounts managed by BlackRock, RA Capital Management, Surveyor Capital (a Citadel company), Samsara BioCapital, PFM Health Sciences, Invus, Janus Henderson Investors and Logos Capital. All existing investors, including CBC Group, RTW Investments, LP, Lilly Asia Ventures, Matrix Partners China, and Casdin Capital, participated in the financing. About the funding, Bing Yao, Ph.D., former CEO and chairman of Viela Bio, and Ting Jia, Ph.D., founder and chief investment officer of Octagon Capital Advisors, will join NiKang’s Board of Directors. “We are thrilled to have such an outstanding group of investors as our shareholders,” said Zhenhai Gao, Ph.D., co-founder, president, and chief executive officer of NiKang. “Their support of our vision allows us to build the world’s leading precision oncology company. We are now well-positioned to rapidly advance our pipeline into the clinic, including our differentiated HIF-2 alpha inhibitor, and to bring our company to the next level of growth.” “This financing is a testament to the quality of our science and team,” Kelsey Chen, Ph.D., MBA, chief financial officer, added. “Since joining NiKang, I have witnessed the passion and dedication of a group of talented scientists who are devoting their lives to advancing treatments for patients. We are grateful to be recognized by such a high-caliber group of investors.” “NiKang has made remarkable progress over the last eight months since our initial investment,” said Ting Jia, Ph.D., a chief investment officer of Octagon. “We are impressed by the team’s accomplishment. We believe NiKang’s unique approach to attacking difficult-to-drug targets offers promising opportunities to develop breakthrough treatments for cancer patients. We are excited to co-lead the series C financing and partner with the NiKang team to accelerate its growth.” “We are proud of what NiKang has achieved since its inception,” said Sean Cao, executive chairman of NiKang and managing director of CBC Group, which incubated the company. “The strength of this group of investors validates NiKang’s achievements and demonstrates their confidence in NiKang’s potential to grow into a leading innovative drug company.” Proceeds will be used to advance the company’s lead drug candidates into the clinic, expand the pipeline, and fund internal drug discovery programs. About NiKang Therapeutics NiKang Therapeutics is a clinical-stage biotech company focused on discovering and developing innovative small molecule oncology medicines to assist patients with unmet medical needs. Our target selection is driven by deep insights into disease biology and molecular pathways. Our discovery approach is informed by target structure biology and capitalizes on structure-based drug design. The successful implementation of our strategy enables us to rapidly and efficiently discover and advance proprietary drug candidates with the most desirable pharmacological features into clinical studies. We strive to bring transformative medicines to patients in need.

Read More

MEDICAL

TeselaGen Biotechnology Announced the Launch of a New Protein Optimization Toolkit for Automated Biotherapeutic Drug Design and Development

TeselaGen Biotechnology | May 21, 2021

TeselaGen Biotechnology today announced the launch of a new protein optimization toolkit for biotherapeutic drug design and development, introducing significant enhancements to the company’s flagship TeselaGen® OS to form designing and developing pharmaceuticals and biotherapeutics faster and fewer expensive. The new capabilities, easily accessible via the cloud-based platform, simplify the planning of highly complex combinatorial protein libraries and support AI models for optimizing new peptides and proteins. New application programming interfaces (APIs) and integration tools have also been extended to further enhance users’ access to the new capabilities. TeselaGen integrates the facility of AI with one end-to-end platform for design, construction, data gathering, and analysis of bioproduct performance, from pharmaceuticals to food and fabrics, significantly accelerating time to plug and reducing costs. The platform’s DESIGN, BUILD, TEST, and find out modules enable researchers to effectively collaborate across an organization's development pipeline to style and build experiments, standardize and share data, and learn and preserve project results by embedding them during a machine learning model. TeselaGen’s DESIGN is an intuitive, user-interface-driven module that permits scientists to style highly complex combinatorial libraries. With this new release, the planning now supports aminoalkanoic acid parts which will be efficiently mapped to DNA. TeselaGen can then automatically generate biology protocols for efficiently synthesizing and assembling the corresponding DNA libraries. TeselaGen’s DISCOVER now supports AI models which will recommend new peptides and proteins supported by the training of supervised and unsupervised learning models. The platform also supports the modeling of unnatural amino acids and multicriteria optimization of proteins. R&D groups can utilize the TeselaGen OS to hurry the invention process. Datasets are uploaded and arranged within the platform and immediately useful for model building within TeselaGen’s DISCOVER module. TeselaGen has demonstrated that it can increase the planning and build speed of biological products and reduce the prices related to research & development by an order of magnitude. Current partnering companies are using the new capabilities for designing antibodies and optimizing their binding affinity, titer, specific productivity, immunogenicity, or other phenotypic variables of interest. Researchers also are looking to TeselaGen for rapidly engineering new vaccines - using methods like virus-like particles (VLPs), DNA, and RNA vaccines - opening the door to attacking rapidly mutating RNA and retroviruses like influenza, HCV, HIV, or coronaviruses. About TeselaGen Biotechnology TeselaGen Biotechnology has developed the primary artificial intelligence-enabled OS for biotechnology, enabling the event and commercialization of high-performance bioproducts – from pharmaceuticals to food to fabrics – faster and easier than ever. TeselaGen® connects biologists, lab technicians, and bioinformaticians so that they will collaboratively design and build experiments, organize and standardize data then test and continually learn from the info. TeselaGen has been deployed by Fortune 50 companies and emerging innovators in biopharmaceuticals, agriculture, and specialty chemicals. the corporate is privately held and based in San Francisco, California.

Read More

AI

Iktos Partners with Kadmon to Use AI for New Drug Design

Iktos, Kadmon | May 19, 2021

Iktos, a company specializing in Artificial Intelligence for new drug design, announced today that it has signed a Research Collaboration Agreement with Kadmon, a clinical-stage biopharmaceutical company based in New York, USA, under which Iktos' generative modeling artificial intelligence (AI) technology will be used to allow the rapid and cost-effective design of novel drug candidates. Iktos will use its de novo structure-based generative modeling technologies to find novel compounds that meet a pre-defined target product profile as part of the deal, to speed up Kadmon's early-stage discovery efforts. Kadmon discovers, develops, and delivers small molecules and biologics for the treatment of human diseases. Intending to identify and develop new product candidates for significant unmet medical needs, Kadmon is expanding and incorporating novel drug discovery platforms. The AI technology developed by Iktos, which is focused on deep generative models, aids in the speed and efficiency of the drug discovery process. Iktos' technology creates virtual novel molecules that have all of the properties of a successful drug molecule automatically. This approach, which has been validated by Iktos' other collaborations, is an innovative approach to one of the most difficult problems in drug design: finding molecules that meet several important drug criteria at the same time, such as potency, selectivity, safety, and project-specific properties. Iktos' technology enables the creation of new hits with optimal protein-ligand interactions in early-stage discovery projects, as predicted by molecular modeling technology. This technique allows for a one-of-a-kind discovery of chemical space, as well as the development of innovative molecule designs with greater Freedom to Operate. Furthermore, allowing multi-parametric in silico optimization from the start of a project greatly reduces the hit finding and hit-to-lead optimization phases. About Iktos Iktos, a French start-up founded in October 2016, specializes in the development of artificial intelligence technologies for chemical research, especially medicinal chemistry, and new drug design. Iktos is working on a proprietary and innovative approach focused on deep learning generative models that allow users to build molecules in silico that follow all of the performance criteria of a small molecule discovery project using existing evidence. Iktos technology allows for significant efficiency gains in upstream pharmaceutical R&D. Iktos' software is utilized as both professional services and a SaaS software platform, Makya. Spaya, a synthesis planning software built on Iktos' proprietary AI technology for retrosynthesis, is also in the works.

Read More

Events