Fighting Cancer with Next-Gen Cell Engineering

Researchers continue to make progress with cancer immunotherapy, a type of treatment that harnesses the bodys own immune cells to attack cancer. But Kole Roybal wants to help move the field further ahead by engineering patients’ immune cells to detect an even broader range of cancers and then launch customized attacks against them. With an eye toward developing the next generation of cell-based immunotherapies, this synthetic biologist at University of California, San Francisco, has already innovatively hacked into how certain cells communicate with each other. Now, he and his research team are using a 2018 NIH Director’s New Innovator Award to build upon that progress.

Spotlight

Alera Labs, LLC

Alera Labs, LLC is a full service contract research company (CRO) focused on small and mid-size pharmaceutical and medical device companies.

OTHER ARTICLES
MedTech

Better Purification and Recovery in Bioprocessing

Article | July 12, 2022

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More
Medical

Next-Gen Gene Therapy to Counter Complex Diseases

Article | August 16, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
MedTech

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | July 16, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More
MedTech

Immunology: A New Frontier in Medical Science

Article | July 16, 2022

Introduction Recent developments in the bioengineering of monoclonal antibodies (mAbs) have revolutionized the treatment of numerous rheumatic and immunological disorders. Currently, several immunological disorders are successfully being targeted and treated using innovative medical techniques such as immunotherapy. Leading companies are increasingly investing in research activities to expand the usage and application of immunology for the treatment of various infectious diseases, including multiple sclerosis, inflammatory bowel disorders, lupus, and psoriasis, leading companies are increasingly investing in research activities. Today, the efforts of researchers in immunology, with a long history of study and research, have borne fruit, as bioengineered mAbs are now being employed in clinical practices. Accelerating Investments: Paving the Way for Immunology The increasing prevalence of infectious diseases, cancer, and immune-mediated inflammatory disorders (IMIDs) is raising the need for more precise classification and an in-depth understanding of the pathology underlying these ailments. Numerous leaders in the biotechnology domain are thus focusing on undertaking numerous strategies, such as new facility launches and collaborations, to address the need by finding deeper inroads into immunology and its use in disease treatments. For instance, in 2022, the University of Texas MD Anderson Cancer Center announced the launch of a visionary research and innovation hub, the James P. Allison Institute, to find new roads in immunotherapy, develop new treatments, and foster groundbreaking science. These developments will result in better diagnosis through the use of selective biomarkers, and early detection of fatal diseases and their treatment, which will prevent complications from happening. Also, the identification of high-risk populations through a deeper understanding of genetic and environmental factors can assist in the prevention of disease through immunotherapy. The Way Forward Immunology has led to the development of biotechnology, making it possible to develop novel drugs and vaccines, as well as diagnostic tests, that can be used to prevent, diagnose, and treat a wide range of autoimmune, infectious, and cancerous diseases. With the rapid advancement in technology and the integration of artificial intelligence, immunology is finding its way into an array of domains and industries, encompassing several research areas including medicine, pharmaceuticals, agriculture, and space. Today, not only researchers but also leading biotech and pharmaceutical companies have recognized that conventional therapies with pharmaceutical and chemical products are being replaced by products derived from immunology. This is because they work well for health problems, are environmentally friendly, and are also emerging as a wealth-generating business in the medical field.

Read More

Spotlight

Alera Labs, LLC

Alera Labs, LLC is a full service contract research company (CRO) focused on small and mid-size pharmaceutical and medical device companies.

Related News

Cell and Gene Therapy, Diagnostics

NorthX Biologics, a leading Nordic development and manufacturing organisation announces acquisition of a biologics manufacturing unit from Valneva

Globenewswire | July 04, 2023

NorthX Biologics (‘NorthX’), a leading Nordic development and manufacturing organisation with a focus on advanced biologics, CGT (cell and gene therapy) and vaccines, announced today the successful acquisition of the Stockholm-based Clinical Trial Manufacturing unit from Valneva Sweden, significantly expanding capabilities. The acquisition includes the transfer of a multi-purpose facility, situated in the Stockholm life science cluster, close to Karolinska University Hospital. In addition, 30 staff members who currently operate the facility will also join NorthX. The site and staff have a long history with extensive experience of serving both Valneva internally and also working with external customers on a contract development and manufacturing basis. With expertise in mammalian expression systems and viral vectors, the capabilities complement those of NorthX’s existing business of advanced microbial based manufacturing of proteins and plasmid DNA. The acquired unit excels in process development, scale up, GMP production, quality control analytics, and quality assurance/release and is capable of working with Biosafety Level (BSL) 2/2+ and BSL 3 organisms. With this expansion, NorthX enhances its capabilities and can offer comprehensive services to a wider range of clients globally. Janet Hoogstraate, currently Managing Director of Valneva Sweden, will join the NorthX team. She commented, “I am very proud when looking back at what we have achieved within the unit over the past years and look forward with great enthusiasm to build on NorthX’s position as the go-to manufacturer of advanced biologics in Northern Europe.” Helena Strigård, CEO of NorthX, said, “We are delighted to join forces with our new colleagues in Stockholm to bring new innovative treatments to tomorrow’s patients.” Thomas Eldered, Chairman of NorthX, commented, “This strategic move marks a significant milestone in our growth journey and strengthens NorthX as Sweden’s Innovation Hub. We are now able to work with ATMPs and advanced biologics, including process development and manufacture for clinical trials and commercial requirements.” ABOUT NORTHX BIOLOGICS NorthX Biologics develops and manufactures advanced biologics and has over 30 years of GMP production experience. The team provides process development and GMP manufacturing services with expertise in plasmid DNA, mRNA, proteins, cell therapy and other advanced biologics. Headquartered in the heart of Sweden, the team serves customers worldwide. In 2021 NorthX was recognised and appointed as the national innovation hub for GMP manufacture of advanced therapeutics and vaccines by the Swedish Government and Vinnova, Sweden's innovation agency. NorthX has the ambition to become a leading cell and gene therapy manufacturer and partner of choice for innovative drug development companies. For more information visit www.nxbio.com.

Read More

Cell and Gene Therapy, AI

BenevolentAI Progresses BEN-34712 for the Potential Treatment of ALS into IND-Enabling Studies

Businesswire | June 05, 2023

BenevolentAI, a leader in the development of cutting-edge AI that accelerates biopharma discovery, announces the successful delivery of its pre-clinical candidate for the potential treatment of amyotrophic lateral sclerosis (ALS), BEN-34712. BEN-34712 is an oral, potent and selective brain penetrant RARɑβ (retinoic acid receptor alpha beta) biased agonist and will now enter investigational new drug (IND)-enabling studies. Impaired retinoic acid signalling has been shown to result in neuroinflammation, oxidative stress and mitochondrial dysfunction, all hallmarks of ALS. In preclinical studies conducted by the Company, BEN-34712 was neuroprotective in a patient-derived, disease-relevant in vitro motor neuron/iAstrocyte co-culture model, demonstrating significant efficacy in both sporadic and familial subtypes of ALS. In addition, BEN-34712 has demonstrated both central nervous system (CNS) target engagement and functional protective effects in the SOD1G93A mouse model of ALS after 50-day repeat dosing. BenevolentAI collaborated with the Sheffield Institute for Translational Neuroscience (SITraN) at the University of Sheffield on this programme, utilising their patient-derived motor neuron/iAstrocyte co-culture systems and in vivo model expertise. Anne Phelan, Chief Scientific Officer, BenevolentAI, said: “There remains a significant and urgent need for new and alternative therapies for patients with ALS. We are pleased by the promising advancement of our drug candidate, BEN-34712, towards clinical development, backed by the compelling preclinical data generated by our collaborators at SITraN.” Richard Mead, Senior Lecturer in Translational Neuroscience at SITraN, commented: "ALS patients suffering from this devastating neurodegenerative disease are in dire need of effective therapy, with the current standard of care options focusing on symptom management or offering limited clinical benefit. We believe BEN-34712 represents an exciting development in our research for a potential new treatment, particularly as it shows effectiveness in both the SOD1G93A mouse model system as well as familial and C9orf72 related ALS patient-derived cell models." About BenevolentAI BenevolentAI is a leading developer of advanced artificial intelligence technologies that unlock the value of multimodal data, surface novel insights, and accelerate biomedical discovery. Through the combined capabilities of its AI platform, its scientific expertise, and wet-lab facilities, the Company is developing an in-house drug pipeline of high-value assets. The Company is headquartered in London, with a research facility in Cambridge (UK) and a further office in New York. About ALS ALS is a progressive neurologic disorder characterised by the loss of cortical and spinal motor neurons, leading to the denervation of nerve endplates, axonal retraction and subsequent muscle atrophy. The average survival time following the initial diagnosis is around two-three years, and while there are drugs approved by the US FDA for ALS, they provide only modest benefits to patients, underwriting the urgent need for new and alternative therapies. About SITraN at the University of Sheffield The Sheffield Institute for Translational Neuroscience (SITraN) is an essential development in the fight against motor neurone disease and other common neurodegenerative disorders, including Parkinson's and dementia, as well as stroke and multiple sclerosis. SITraN has the potential to bring new treatments and new hope to patients and carers in the UK and worldwide, by significantly accelerating the pace of therapeutic development using technologies such as experimental modelling of disease, gene therapy and stem cell biology, gene expression profiling and bioinformatics analysis and modelling of the biological processes. Since its opening by Queen Elizabeth II in 2010, SITraN has grown immensely and developed into a leading global facility which is at the forefront of research and expertise.

Read More

Cell and Gene Therapy

Mission Bio Develops Single-Cell Solution to Address Challenges in Genome Editing

PR Newswire | May 12, 2023

Mission Bio, the single-cell DNA and multi-omics company, announced today the Tapestri® Genome Editing Solution, an end-to-end product for genome editing analysis. The product will be previewed next week at the American Society of Gene and Cell Therapy Conference (ASGCT) 26th Annual Meeting. By enabling robust single-cell insights impacting both efficacy and safety, the solution will be a powerful analytical tool for developing the next generation of gene-edited therapies. The first CRISPR-modified therapy is now under regulatory review, and many similar cell-based therapies are expected to follow for multiple intractable diseases. However, genome editing can result in complex, heterogeneous mixtures of edits that make it challenging to apply a level of process control over genome-edited cell products. The Tapestri® Genome Editing Solution addresses these challenges by measuring gene editing outcomes at single-cell resolution, capturing the co-occurrence of on- and off-target edits, as well as the zygosity of edits, which conventional bulk analyses cannot. Additionally, this analysis can be completed within days by processing thousands of cells at a time without any prior selection, while conventional analytical methods require months for clonal outgrowth. An early iteration of the Tapestri® Genome Editing Solution is currently being tested by key genome editing researchers and leading cell therapy developers in academia and industry, who are providing vital feedback on the analysis. Mission Bio recently collaborated with the National Institute of Standards and Technology (NIST) in the Genome Editing Consortium, which provided qualified samples to collaborators to assess technologies that report variant size and frequency within a mixed cell population. Samantha Maragh, NIST Genome Editing Program Leader, will present results of the study at 12:00 p.m. PT on May 17 (Poster 533) at the ASGCT Annual Meeting. "We look forward to pulling back the curtain on our end-to-end Genome Editing Solution at ASGCT," said Todd Druley, MD, PhD, Chief Medical Officer at Mission Bio. "The data acquired under the Genome Editing Consortium further demonstrates the Tapestri® Platform's potential as a standard analysis tool within the genome editing community. Given the heterogeneous results of gene editing strategies, there is a great need to address both industry and regulatory genome editing concerns with a consistent and highly precise technology for accurately measuring gene editing outcomes, and our new offering will be a complete solution to do just that." About Mission Bio Mission Bio is a life sciences company that accelerates discoveries and cures for a wide range of diseases by equipping researchers with the tools they need to better measure and predict our resistance and response to new therapies. Mission Bio's multi-omics approach improves time-to-market for new therapeutics, including innovative cell and gene therapies that provide new pathways to health. Founded in 2014, Mission Bio has secured investment from Novo Growth, Cota Capital, Agilent Technologies, Mayfield Fund, and others. The company's Tapestri® Platform gives researchers around the globe the power to interrogate every molecule in a cell together, providing a comprehensive understanding of activity from a single sample. Tapestri® is the only commercialized multi-omics platform capable of analyzing DNA and protein simultaneously from the same sample at single-cell resolution. The Tapestri® Platform is being utilized by customers at leading research centers, pharmaceutical, and diagnostics companies worldwide to develop treatments and eventually cures for cancer.

Read More

Cell and Gene Therapy, Diagnostics

NorthX Biologics, a leading Nordic development and manufacturing organisation announces acquisition of a biologics manufacturing unit from Valneva

Globenewswire | July 04, 2023

NorthX Biologics (‘NorthX’), a leading Nordic development and manufacturing organisation with a focus on advanced biologics, CGT (cell and gene therapy) and vaccines, announced today the successful acquisition of the Stockholm-based Clinical Trial Manufacturing unit from Valneva Sweden, significantly expanding capabilities. The acquisition includes the transfer of a multi-purpose facility, situated in the Stockholm life science cluster, close to Karolinska University Hospital. In addition, 30 staff members who currently operate the facility will also join NorthX. The site and staff have a long history with extensive experience of serving both Valneva internally and also working with external customers on a contract development and manufacturing basis. With expertise in mammalian expression systems and viral vectors, the capabilities complement those of NorthX’s existing business of advanced microbial based manufacturing of proteins and plasmid DNA. The acquired unit excels in process development, scale up, GMP production, quality control analytics, and quality assurance/release and is capable of working with Biosafety Level (BSL) 2/2+ and BSL 3 organisms. With this expansion, NorthX enhances its capabilities and can offer comprehensive services to a wider range of clients globally. Janet Hoogstraate, currently Managing Director of Valneva Sweden, will join the NorthX team. She commented, “I am very proud when looking back at what we have achieved within the unit over the past years and look forward with great enthusiasm to build on NorthX’s position as the go-to manufacturer of advanced biologics in Northern Europe.” Helena Strigård, CEO of NorthX, said, “We are delighted to join forces with our new colleagues in Stockholm to bring new innovative treatments to tomorrow’s patients.” Thomas Eldered, Chairman of NorthX, commented, “This strategic move marks a significant milestone in our growth journey and strengthens NorthX as Sweden’s Innovation Hub. We are now able to work with ATMPs and advanced biologics, including process development and manufacture for clinical trials and commercial requirements.” ABOUT NORTHX BIOLOGICS NorthX Biologics develops and manufactures advanced biologics and has over 30 years of GMP production experience. The team provides process development and GMP manufacturing services with expertise in plasmid DNA, mRNA, proteins, cell therapy and other advanced biologics. Headquartered in the heart of Sweden, the team serves customers worldwide. In 2021 NorthX was recognised and appointed as the national innovation hub for GMP manufacture of advanced therapeutics and vaccines by the Swedish Government and Vinnova, Sweden's innovation agency. NorthX has the ambition to become a leading cell and gene therapy manufacturer and partner of choice for innovative drug development companies. For more information visit www.nxbio.com.

Read More

Cell and Gene Therapy, AI

BenevolentAI Progresses BEN-34712 for the Potential Treatment of ALS into IND-Enabling Studies

Businesswire | June 05, 2023

BenevolentAI, a leader in the development of cutting-edge AI that accelerates biopharma discovery, announces the successful delivery of its pre-clinical candidate for the potential treatment of amyotrophic lateral sclerosis (ALS), BEN-34712. BEN-34712 is an oral, potent and selective brain penetrant RARɑβ (retinoic acid receptor alpha beta) biased agonist and will now enter investigational new drug (IND)-enabling studies. Impaired retinoic acid signalling has been shown to result in neuroinflammation, oxidative stress and mitochondrial dysfunction, all hallmarks of ALS. In preclinical studies conducted by the Company, BEN-34712 was neuroprotective in a patient-derived, disease-relevant in vitro motor neuron/iAstrocyte co-culture model, demonstrating significant efficacy in both sporadic and familial subtypes of ALS. In addition, BEN-34712 has demonstrated both central nervous system (CNS) target engagement and functional protective effects in the SOD1G93A mouse model of ALS after 50-day repeat dosing. BenevolentAI collaborated with the Sheffield Institute for Translational Neuroscience (SITraN) at the University of Sheffield on this programme, utilising their patient-derived motor neuron/iAstrocyte co-culture systems and in vivo model expertise. Anne Phelan, Chief Scientific Officer, BenevolentAI, said: “There remains a significant and urgent need for new and alternative therapies for patients with ALS. We are pleased by the promising advancement of our drug candidate, BEN-34712, towards clinical development, backed by the compelling preclinical data generated by our collaborators at SITraN.” Richard Mead, Senior Lecturer in Translational Neuroscience at SITraN, commented: "ALS patients suffering from this devastating neurodegenerative disease are in dire need of effective therapy, with the current standard of care options focusing on symptom management or offering limited clinical benefit. We believe BEN-34712 represents an exciting development in our research for a potential new treatment, particularly as it shows effectiveness in both the SOD1G93A mouse model system as well as familial and C9orf72 related ALS patient-derived cell models." About BenevolentAI BenevolentAI is a leading developer of advanced artificial intelligence technologies that unlock the value of multimodal data, surface novel insights, and accelerate biomedical discovery. Through the combined capabilities of its AI platform, its scientific expertise, and wet-lab facilities, the Company is developing an in-house drug pipeline of high-value assets. The Company is headquartered in London, with a research facility in Cambridge (UK) and a further office in New York. About ALS ALS is a progressive neurologic disorder characterised by the loss of cortical and spinal motor neurons, leading to the denervation of nerve endplates, axonal retraction and subsequent muscle atrophy. The average survival time following the initial diagnosis is around two-three years, and while there are drugs approved by the US FDA for ALS, they provide only modest benefits to patients, underwriting the urgent need for new and alternative therapies. About SITraN at the University of Sheffield The Sheffield Institute for Translational Neuroscience (SITraN) is an essential development in the fight against motor neurone disease and other common neurodegenerative disorders, including Parkinson's and dementia, as well as stroke and multiple sclerosis. SITraN has the potential to bring new treatments and new hope to patients and carers in the UK and worldwide, by significantly accelerating the pace of therapeutic development using technologies such as experimental modelling of disease, gene therapy and stem cell biology, gene expression profiling and bioinformatics analysis and modelling of the biological processes. Since its opening by Queen Elizabeth II in 2010, SITraN has grown immensely and developed into a leading global facility which is at the forefront of research and expertise.

Read More

Cell and Gene Therapy

Mission Bio Develops Single-Cell Solution to Address Challenges in Genome Editing

PR Newswire | May 12, 2023

Mission Bio, the single-cell DNA and multi-omics company, announced today the Tapestri® Genome Editing Solution, an end-to-end product for genome editing analysis. The product will be previewed next week at the American Society of Gene and Cell Therapy Conference (ASGCT) 26th Annual Meeting. By enabling robust single-cell insights impacting both efficacy and safety, the solution will be a powerful analytical tool for developing the next generation of gene-edited therapies. The first CRISPR-modified therapy is now under regulatory review, and many similar cell-based therapies are expected to follow for multiple intractable diseases. However, genome editing can result in complex, heterogeneous mixtures of edits that make it challenging to apply a level of process control over genome-edited cell products. The Tapestri® Genome Editing Solution addresses these challenges by measuring gene editing outcomes at single-cell resolution, capturing the co-occurrence of on- and off-target edits, as well as the zygosity of edits, which conventional bulk analyses cannot. Additionally, this analysis can be completed within days by processing thousands of cells at a time without any prior selection, while conventional analytical methods require months for clonal outgrowth. An early iteration of the Tapestri® Genome Editing Solution is currently being tested by key genome editing researchers and leading cell therapy developers in academia and industry, who are providing vital feedback on the analysis. Mission Bio recently collaborated with the National Institute of Standards and Technology (NIST) in the Genome Editing Consortium, which provided qualified samples to collaborators to assess technologies that report variant size and frequency within a mixed cell population. Samantha Maragh, NIST Genome Editing Program Leader, will present results of the study at 12:00 p.m. PT on May 17 (Poster 533) at the ASGCT Annual Meeting. "We look forward to pulling back the curtain on our end-to-end Genome Editing Solution at ASGCT," said Todd Druley, MD, PhD, Chief Medical Officer at Mission Bio. "The data acquired under the Genome Editing Consortium further demonstrates the Tapestri® Platform's potential as a standard analysis tool within the genome editing community. Given the heterogeneous results of gene editing strategies, there is a great need to address both industry and regulatory genome editing concerns with a consistent and highly precise technology for accurately measuring gene editing outcomes, and our new offering will be a complete solution to do just that." About Mission Bio Mission Bio is a life sciences company that accelerates discoveries and cures for a wide range of diseases by equipping researchers with the tools they need to better measure and predict our resistance and response to new therapies. Mission Bio's multi-omics approach improves time-to-market for new therapeutics, including innovative cell and gene therapies that provide new pathways to health. Founded in 2014, Mission Bio has secured investment from Novo Growth, Cota Capital, Agilent Technologies, Mayfield Fund, and others. The company's Tapestri® Platform gives researchers around the globe the power to interrogate every molecule in a cell together, providing a comprehensive understanding of activity from a single sample. Tapestri® is the only commercialized multi-omics platform capable of analyzing DNA and protein simultaneously from the same sample at single-cell resolution. The Tapestri® Platform is being utilized by customers at leading research centers, pharmaceutical, and diagnostics companies worldwide to develop treatments and eventually cures for cancer.

Read More

Events