FDA announces new policy framework for development of regenerative medicine products

Today the U.S. Food and Drug Administration announced a comprehensive policy framework for the development and oversight of regenerative medicine products, including novel cellular therapies. The framework outlined in a suite of four guidance documents builds upon the FDAs existing risk-based regulatory approach to more clearly describe what products are regulated as drugs, devices, and/or biological products. Further, two of the guidance documents propose an efficient, science-based process for helping to ensure the safety and effectiveness of these therapies, while supporting development in this area.

Spotlight

Evolva SA

Evolva stands for a world where there is less sugar in your food, you and your family are safe from biting ticks, and your cat lives longer—and that’s just for starters.

OTHER ARTICLES
MedTech

AI and Biotechnology: The Future of Healthcare Industry

Article | July 13, 2022

Artificial intelligence has grasped the foundation in biotech. It can have the most innovative impact on biotechnology. AI has already established its presence in our day-to-day life. AI has made the existence of self-driving cars possible. Likewise, the benefits and quality that it can contribute to biotech can also be felt. With AI, bio technicians will be able to enhance virtual screening, overlook preliminary datasets from clinics, and decipher an enormous amount of information. It can also help in improving the medication process by gathering and analyzing every bit of information. The Significance of AI in Biotechnology In the past few years, the application of artificial intelligence in the biotechnology industry has shifted from being sci-fi to sci-fact. A vast number of biotech companies like Deep Genomics are adopting AI for making data-driven decisions and use analytics tools to work efficiently. Unlike the AI robots in sci-fi that are ready to take over the world. AI designed for biotech has been designed to solve certain problems or complete a bunch of tasks by using automated algorithms. The aim of AI technology for biotech is to collect insights along with hidden patterns from large amounts of data. All the different industries of biotech including agriculture, animal, medical, industrial, and bioinformatics are gradually being affected by artificial intelligence. Moreover, the biotech industry is realizing that AI enables them some of the important strength to their business, including: Expanding accessibility Cost-effectiveness Critical predictions Efficient decision-making Research centers like PwC have also estimated output of $15.7 trillion by 2030 solely with AI contribution in industries. A survey revealed that about 44% of life science experts are using AI for R&D activities, as well. Use of AI in Biotechnology Altering Biomedical and Clinical Data So far the most developed use of AI is its ability to read voluminous data records and interpret them. It can prove to be a life-save for bio technicians who would have to examine that much data from research publications by themselves for the validation of their hypothesis. With the help of AI, clinical studies of patients will also become easier as all the examination reports and prescriptions will be stored in one place for cross-reference. Furthermore, it will also help in blending and fetching data into usable formats for analysis. Test Result Prediction Through trial and error, AI along with machine learning can help in predicting the response of the patient to certain drugs to provide more effective outcomes. Drug Design & Discovery AI plays a vital role whether it’s designing a new molecule or identifying new biological targets. It helps in identifying and validating drugs. It reduces the cost and time spent on the entire drug trial process and reaches the market. Personalized Medications for Rare Diseases With the combination of body scan results, patients’ body and analytics, AI can also help in detecting dangerous diseases at an early stage. Improving Process of Manufacturing To improve the process of manufacturing in biotechnology, AI offers a wide range of opportunities. It controls quality, reduces wastage, improves useability, and minimizes the designing time. Moving Towards AI-Enhanced Biotech Future Ever since the concept of artificial intelligence has arrived, being curious by nature, humans have started working towards achieving this goal. It has been growing at a fast pace while showing unbelievable growth and achievements at times. In comparison to the traditional methods used in the biotechnology industry, AI-based methods seem more reliable and accurate. In the upcoming years, it will show its success by improving the quality of health people have. You can also develop your AI-based application or know more about it by taking IT consultations.

Read More
MedTech

Immunology: A New Frontier in Medical Science

Article | July 12, 2022

Introduction Recent developments in the bioengineering of monoclonal antibodies (mAbs) have revolutionized the treatment of numerous rheumatic and immunological disorders. Currently, several immunological disorders are successfully being targeted and treated using innovative medical techniques such as immunotherapy. Leading companies are increasingly investing in research activities to expand the usage and application of immunology for the treatment of various infectious diseases, including multiple sclerosis, inflammatory bowel disorders, lupus, and psoriasis, leading companies are increasingly investing in research activities. Today, the efforts of researchers in immunology, with a long history of study and research, have borne fruit, as bioengineered mAbs are now being employed in clinical practices. Accelerating Investments: Paving the Way for Immunology The increasing prevalence of infectious diseases, cancer, and immune-mediated inflammatory disorders (IMIDs) is raising the need for more precise classification and an in-depth understanding of the pathology underlying these ailments. Numerous leaders in the biotechnology domain are thus focusing on undertaking numerous strategies, such as new facility launches and collaborations, to address the need by finding deeper inroads into immunology and its use in disease treatments. For instance, in 2022, the University of Texas MD Anderson Cancer Center announced the launch of a visionary research and innovation hub, the James P. Allison Institute, to find new roads in immunotherapy, develop new treatments, and foster groundbreaking science. These developments will result in better diagnosis through the use of selective biomarkers, and early detection of fatal diseases and their treatment, which will prevent complications from happening. Also, the identification of high-risk populations through a deeper understanding of genetic and environmental factors can assist in the prevention of disease through immunotherapy. The Way Forward Immunology has led to the development of biotechnology, making it possible to develop novel drugs and vaccines, as well as diagnostic tests, that can be used to prevent, diagnose, and treat a wide range of autoimmune, infectious, and cancerous diseases. With the rapid advancement in technology and the integration of artificial intelligence, immunology is finding its way into an array of domains and industries, encompassing several research areas including medicine, pharmaceuticals, agriculture, and space. Today, not only researchers but also leading biotech and pharmaceutical companies have recognized that conventional therapies with pharmaceutical and chemical products are being replaced by products derived from immunology. This is because they work well for health problems, are environmentally friendly, and are also emerging as a wealth-generating business in the medical field.

Read More
Research

Expansion of BioPharma: Opportunities and Investments

Article | July 11, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
MedTech

How to Choose a Reliable Biotech Clinical Trial Management System?

Article | October 7, 2022

Introduction The medical and life-science industries are experiencing a robust transformation with the increasing prevalence of various types of diseases, including infectious diseases, chronic disorders, and acute conditions around the world. As a result, a significant rise in demand for more effective therapeutic drugs and bionics is being witnessed, leading to a swift increase in the number of clinical trials. For a successful trial, it is important for biotech companies to ensure the data submitted to regulatory bodies regarding clinical trials is accurate, reliable, and definitive from an ethical point of view. A reliable clinical trial management system plays a vital role in collecting, monitoring, and managing clinical data. The availability of high-quality clinical data also helps clinical research institutions make efficient treatment decisions and provide proper patient care. Hence, a number of biotech companies and research organizations are focusing on leveraging innovative clinical trial management solutions to handle a large amount of data, particularly in multi-center trials, and generate reliable, high-quality, and statistically sound data from clinical trials. However, selecting the most appropriate and reliable clinical trial management system is vital for the clinical trial's success. Let's see some of the steps that will assist these firms in choosing the right CTMS. Key Steps for Selecting Right Biotech Clinical Trial Management System Prioritize Study Needs Considering and prioritizing study needs is a crucial step in choosing the most reliable clinical trial management system for biotech companies. Prioritizing helps them to identify a solution that improves the study's quality and removes uncertainty for researchers when faced with difficult choices. Hence, biotech and life-science organizations should choose a clinical trial system that is simple to use, well-organized, and suitably designed to minimize the number of clicks required to complete a task. Select CTMS with Multiple Integrations Integrated clinical trial management systems provide the best value for the companies’ funds as they guarantee the smooth functioning of research protocols. In addition, integrations are necessary to fully understand the importance and advantages of clinical trial management software for ensuring smooth transitions between site management and data collection. Biotech and clinical research should look for CTMS platforms that can integrate with electronic medical record (EMR) platforms and clinical research process content (CRPC) billing grids. This will allow them to use the same billing designations and ensure compliance while minimizing the need for duplicate processes. Ensure System Compliance and Security Clinical research organizations need to adhere to a plethora of complex regulations in order to ensure compliance with one of the most challenging environments of principles, which is information security and privacy. Security and system compliance are vital aspects of choosing the right CTMS solutions for biotech firms as they assist in building trust and form a part of the system’s duties. While selecting CTMS systems, it is essential for companies engaged in clinical research to ensure that these platforms are able to configure both, group and individual permissions, along with having a data backup and recovery plan for hosted systems. This will allow companies to assess the privacy and security implications of research and anticipate complications that may arise in each phase of the project. Assess the Scalability Choosing a scalable CTMS that can accommodate various types of fluctuations and expansions enables biotech and clinical firms to quickly adapt to fast-changing trends and demand spikes while reducing maintenance costs and enhancing user agility. As scalability also means secure and expanded data storage, these businesses should instead use SaaS solutions than manually manage an ever-growing collection of hard drives. The right CTMS ensures accommodating the firm’s availability requirements without incurring the capital costs associated with expanding a physical infrastructure. The Closing Thought A well-executed and successful clinical trial involves multiple stages and processes. Several quality controls and stringent adherence to regulations are essential for the steps, along with efficient cross-departmental processes and procedures. Incorporating the right CTMS paves the way for paperless data collection, regulatory filing, and fiscal management tools for biotech researchers and administrative personnel.

Read More

Spotlight

Evolva SA

Evolva stands for a world where there is less sugar in your food, you and your family are safe from biting ticks, and your cat lives longer—and that’s just for starters.

Related News

FDA Advancing Beneficial Animal Biotechnology Product Development

fda | April 03, 2019

the FDA announced its Plant and Animal Biotechnology Innovation Action Plan, which focuses on the agency’s risk-based regulatory framework. This framework will help secure confidence in the safety and performance of plant and animal-based innovative products for consumers, patients, and America’s global trading partners. Making sure these products are safe and perform as expected is critical to maintaining consumer and commercial confidence in them and realizing their potential benefits for human and animal health.

Read More

The Farcical Battle Over What to Call Lab-Grown Meat

TheAtlantic.com | July 13, 2018

On Thursday, in a small but packed auditorium, the FDA convened a public meeting about lab-grown meat but you wouldn’t have known that if you were listening for those words. According to the FDA, it was actually about “foods produced using animal-cell culture technology.” And according to the meeting’s various speakers, it was “clean meat,” or “artificial meat,” or “in vitro meat,” or “cell-culture products,” or “ cultured meat,” or “cultured tissue” (not meat!). This is a war of words, with each one chosen to evoke specific associations. And it is a war to define lab-grown meat as either the exciting future of food or a freak science experiment.

Read More

Have Biotech ETFs Finally Bottomed?

biotech | March 14, 2017

From Zacks: 2016 was a tough year for biotech stocks with the sector facing a lot of criticism for rising drug prices. Although shares did rally post-election in November on hopes that drug pricing would not be a key focus area under a Donald Trump presidency, the rally turned out to be short-lived following the President’s views regarding drug pricing

Read More

FDA Advancing Beneficial Animal Biotechnology Product Development

fda | April 03, 2019

the FDA announced its Plant and Animal Biotechnology Innovation Action Plan, which focuses on the agency’s risk-based regulatory framework. This framework will help secure confidence in the safety and performance of plant and animal-based innovative products for consumers, patients, and America’s global trading partners. Making sure these products are safe and perform as expected is critical to maintaining consumer and commercial confidence in them and realizing their potential benefits for human and animal health.

Read More

The Farcical Battle Over What to Call Lab-Grown Meat

TheAtlantic.com | July 13, 2018

On Thursday, in a small but packed auditorium, the FDA convened a public meeting about lab-grown meat but you wouldn’t have known that if you were listening for those words. According to the FDA, it was actually about “foods produced using animal-cell culture technology.” And according to the meeting’s various speakers, it was “clean meat,” or “artificial meat,” or “in vitro meat,” or “cell-culture products,” or “ cultured meat,” or “cultured tissue” (not meat!). This is a war of words, with each one chosen to evoke specific associations. And it is a war to define lab-grown meat as either the exciting future of food or a freak science experiment.

Read More

Have Biotech ETFs Finally Bottomed?

biotech | March 14, 2017

From Zacks: 2016 was a tough year for biotech stocks with the sector facing a lot of criticism for rising drug prices. Although shares did rally post-election in November on hopes that drug pricing would not be a key focus area under a Donald Trump presidency, the rally turned out to be short-lived following the President’s views regarding drug pricing

Read More

Events