Drones Land in the Cell and Gene Therapy Space

CHRISTINA BENNETT | July 5, 2019 | 15 views

Cell and gene therapies could be flying high soon, joining the medical supplies, whole blood products, and even organs being transported by drones. In collaboration with RPS Aerospace, the Italy-based biotech company Anemocyte developed a remotely piloted drone system to securely transport final cell and gene therapy products from manufacturing sites to clinical centers.

Spotlight

LGC

LGC is an international leader in the laboratory services, measurement standards, reference materials and proficiency testing marketplaces. Our products and services enable our customers to achieve excellence in investigative, diagnostic and measurement science and to conform to international statutory and regulatory standards. LGC is the UK’s designated National Measurement Institute for chemical and biomeasurement and is also the host organisation for the UK’s Government Chemist function.

OTHER ARTICLES
MEDTECH

Expansion of BioPharma: Opportunities and Investments

Article | July 16, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
MEDICAL

2022 U.S. Market Research Report with COVID-19 Forecasts2

Article | July 14, 2022

The global biotechnology market is expected to grow at a compound annual growth rate (CAGR) of 13.9 percent from 2022 to 2030, with a value estimated at USD 1,023.92 billion in 2021. The market is being propelled by strong government support in the form of initiatives aimed at modernizing the regulatory framework, improving approval processes and reimbursement policies, and standardizing clinical studies. The growing presence of personalized medicine and an increasing number of orphan drug formulations are opening up new avenues for biotechnology applications and driving the influx of emerging and innovative biotechnology companies, which is driving market revenue even further. The 2022 Biotech Research and Development Market Research Report is one of the most comprehensive and in-depth assessments of the industry in the United States, containing over 100 data sets spanning the years 2013 to 2026. This Kentley Insights report contains historical and forecasted market size, product lines, profitability, financial ratios, BCG matrix, state statistics, operating expense details, organizational breakdown, consolidation analysis, employee productivity, price inflation, pay bands for the top 20 industry jobs, trend analysis and forecasts on companies, locations, employees, payroll, and much more. Companies in the Biotech Research and Development industry are primarily engaged in biotechnology research and experimental development. Biotechnology research and development entails the investigation of the use of microorganisms and cellular and bimolecular processes to create or modify living or non-living materials. This biotechnology research and development may result in the development of new biotechnology processes or prototypes of new or genetically altered products that can be replicated, used, or implemented by various industries. This report was created using the findings of extensive business surveys and econometrics. The professionals follow reports with accurate and apt information on market sizing, benchmarking, strategic planning, due diligence, cost-cutting, planning, understanding industry dynamics, forecasting, streamlining, gap analysis, and other ana

Read More
RESEARCH

Biotech in 2022

Article | July 11, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More
MEDTECH

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | July 5, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More

Spotlight

LGC

LGC is an international leader in the laboratory services, measurement standards, reference materials and proficiency testing marketplaces. Our products and services enable our customers to achieve excellence in investigative, diagnostic and measurement science and to conform to international statutory and regulatory standards. LGC is the UK’s designated National Measurement Institute for chemical and biomeasurement and is also the host organisation for the UK’s Government Chemist function.

Related News

MEDTECH

GP-write Partners with DNA Script to Accelerate DNA-Writing Technology and Accessibility

Genome Project-write | October 18, 2021

GP-write’s CAD is a one-stop shop for microbe, plant and animal genome writing and redesign. Its automated workflow allows users to rapidly upload a genome, redesign it and synthesize the new sequence. The tool enables researchers to directly order synthetic DNA or related products and services from GP-write’s affiliated members. DNA Script’s SYNTAX System, a benchtop DNA printer powered by their groundbreaking enzymatic DNA synthesis (EDS) technology, enables users to print sequences designed on GP-write’s CAD tool right in their lab. The first-of-its-kind DNA printer expedites workflows, making DNA writing as simple and efficient as next-generation sequencing. DNA Script will host a roundtable at the GP-write 5.0 conference on October 22 at 12:30 p.m. ET to engage attendees in a discussion centered on biosecurity as it relates to emerging technologies, including GP-write’s new CAD tool and DNA Script’s SYNTAX System. “We’re pleased to join GP-write and their industrial partners to drive innovation on the forefront of DNA printing technologies. Just as NGS, or DNA 'read,' and CRISPR, or DNA 'edit,' have brought significant advances to research and clinical care, we believe the broad accessibility of synthetic DNA printing, or DNA 'write,' offered by our SYNTAX System will be equally transformative and power the next bio-revolution.” Thomas Ybert, co-founder and CEO of DNA Script GP-write President and General Counsel, Amy Cayne Schwartz, notes that the organizations are partnering to work toward realizing “a shared vision of a future where writing genomes is facile, democratized and safely accessible.” Schwartz explains that “this will open up new frontiers for development of novel therapeutics and solutions for environmental health.” About Genome Project-write GP-write, conceived as a sequel to the Human Genome Project, applies lessons learned from HGP to pursue scientific exploration fully integrated with the development of genome engineering technologies. The primary goal of the project is to drive dramatic cost reductions and expedite whole-genome writing and redesign over the next decade, empowering researchers to uncover complex biological behavior and reprogram organisms to address defining global challenges in medicine, biotechnology and environmental health. About DNA Script Founded in 2014, DNA Script is a pioneering life sciences technology company developing a new, faster, more powerful and versatile way to design and manufacture nucleic acids. The company has developed an alternative to traditional DNA synthesis called Enzymatic DNA Synthesis, or EDS, allowing this technology to be accessible to labs with the first benchtop enzymatic synthesis instrument, the SYNTAX System. By putting DNA synthesis back in the lab, DNA Script aims to transform life sciences research through innovative technology that gives researchers unprecedented control and autonomy.

Read More

New Device Permits a Closer Look at Previously Inaccessible Areas of the Genome

Technology Networks | November 25, 2019

Expansions of DNA repeats are very hard to analyze. A method developed by researchers at the Max Planck Institute for Molecular Genetics in Berlin allows for a detailed look at these previously inaccessible regions of the genome. It combines nanopore sequencing, stem cell, and CRISPR-Cas technologies. The method could improve the diagnosis of various congenital diseases and cancers in the future. Large parts of the genome consist of monotonous regions where short sections of the genome repeat hundreds or thousands of times. But expansions of these "DNA repeats" in the wrong places can have dramatic consequences, like in patients with Fragile X syndrome, one of the most commonly identifiable hereditary causes of cognitive disability in humans. However, these repetitive regions are still regarded as an unknown territory that cannot be examined appropriately, even with modern methods. A research team led by Franz-Josef Müller at the Max Planck Institute for Molecular Genetics in Berlin and the University Hospital of Schleswig-Holstein in Kiel recently shed light on this inaccessible region of the genome. Müller's team was the first to successfully determine the length of genomic tandem repeats in patient-derived stem cell cultures. The researchers additionally obtained data on the epigenetic state of the repeats by scanning individual DNA molecules. The method, which is based on nanopore sequencing and CRISPR-Cas technologies, opens the door for research into repetitive genomic regions, and the rapid and accurate diagnosis of a range of diseases.

Read More

Synthego Launches Genome Engineering for iPS Cells

GEN | October 23, 2019

Synthego’s newest offering applies genome engineering in order to address a longtime challenge in research and drug development—the dearth of high-quality, physiologically relevant biological models needed for translational medicine. The provider of genome engineering products and services this week launched a genome engineering service for induced pluripotent stem (iPS) cells—an expansion of automated cell editing capabilities that according to Synthego is designed to achieve extremely high editing efficiency of iPS cells at an industrial scale. Synthego reasons that iPS cells can provide one of the most reliable and accurate models for disease because they allow researchers to create patient-specific variations. Yet iPS cells created through the reprogramming of human adult cells have traditionally been difficult to handle and modify genetically. Synthego’s new offering of iPS cells includes modification by removal of gene function (knockout), single nucleotide variation, protein tagging and other knock-ins, all with the goal of enabling scientists to generate edits at a massive scale to accelerate research and disease modeling.

Read More

MEDTECH

GP-write Partners with DNA Script to Accelerate DNA-Writing Technology and Accessibility

Genome Project-write | October 18, 2021

GP-write’s CAD is a one-stop shop for microbe, plant and animal genome writing and redesign. Its automated workflow allows users to rapidly upload a genome, redesign it and synthesize the new sequence. The tool enables researchers to directly order synthetic DNA or related products and services from GP-write’s affiliated members. DNA Script’s SYNTAX System, a benchtop DNA printer powered by their groundbreaking enzymatic DNA synthesis (EDS) technology, enables users to print sequences designed on GP-write’s CAD tool right in their lab. The first-of-its-kind DNA printer expedites workflows, making DNA writing as simple and efficient as next-generation sequencing. DNA Script will host a roundtable at the GP-write 5.0 conference on October 22 at 12:30 p.m. ET to engage attendees in a discussion centered on biosecurity as it relates to emerging technologies, including GP-write’s new CAD tool and DNA Script’s SYNTAX System. “We’re pleased to join GP-write and their industrial partners to drive innovation on the forefront of DNA printing technologies. Just as NGS, or DNA 'read,' and CRISPR, or DNA 'edit,' have brought significant advances to research and clinical care, we believe the broad accessibility of synthetic DNA printing, or DNA 'write,' offered by our SYNTAX System will be equally transformative and power the next bio-revolution.” Thomas Ybert, co-founder and CEO of DNA Script GP-write President and General Counsel, Amy Cayne Schwartz, notes that the organizations are partnering to work toward realizing “a shared vision of a future where writing genomes is facile, democratized and safely accessible.” Schwartz explains that “this will open up new frontiers for development of novel therapeutics and solutions for environmental health.” About Genome Project-write GP-write, conceived as a sequel to the Human Genome Project, applies lessons learned from HGP to pursue scientific exploration fully integrated with the development of genome engineering technologies. The primary goal of the project is to drive dramatic cost reductions and expedite whole-genome writing and redesign over the next decade, empowering researchers to uncover complex biological behavior and reprogram organisms to address defining global challenges in medicine, biotechnology and environmental health. About DNA Script Founded in 2014, DNA Script is a pioneering life sciences technology company developing a new, faster, more powerful and versatile way to design and manufacture nucleic acids. The company has developed an alternative to traditional DNA synthesis called Enzymatic DNA Synthesis, or EDS, allowing this technology to be accessible to labs with the first benchtop enzymatic synthesis instrument, the SYNTAX System. By putting DNA synthesis back in the lab, DNA Script aims to transform life sciences research through innovative technology that gives researchers unprecedented control and autonomy.

Read More

New Device Permits a Closer Look at Previously Inaccessible Areas of the Genome

Technology Networks | November 25, 2019

Expansions of DNA repeats are very hard to analyze. A method developed by researchers at the Max Planck Institute for Molecular Genetics in Berlin allows for a detailed look at these previously inaccessible regions of the genome. It combines nanopore sequencing, stem cell, and CRISPR-Cas technologies. The method could improve the diagnosis of various congenital diseases and cancers in the future. Large parts of the genome consist of monotonous regions where short sections of the genome repeat hundreds or thousands of times. But expansions of these "DNA repeats" in the wrong places can have dramatic consequences, like in patients with Fragile X syndrome, one of the most commonly identifiable hereditary causes of cognitive disability in humans. However, these repetitive regions are still regarded as an unknown territory that cannot be examined appropriately, even with modern methods. A research team led by Franz-Josef Müller at the Max Planck Institute for Molecular Genetics in Berlin and the University Hospital of Schleswig-Holstein in Kiel recently shed light on this inaccessible region of the genome. Müller's team was the first to successfully determine the length of genomic tandem repeats in patient-derived stem cell cultures. The researchers additionally obtained data on the epigenetic state of the repeats by scanning individual DNA molecules. The method, which is based on nanopore sequencing and CRISPR-Cas technologies, opens the door for research into repetitive genomic regions, and the rapid and accurate diagnosis of a range of diseases.

Read More

Synthego Launches Genome Engineering for iPS Cells

GEN | October 23, 2019

Synthego’s newest offering applies genome engineering in order to address a longtime challenge in research and drug development—the dearth of high-quality, physiologically relevant biological models needed for translational medicine. The provider of genome engineering products and services this week launched a genome engineering service for induced pluripotent stem (iPS) cells—an expansion of automated cell editing capabilities that according to Synthego is designed to achieve extremely high editing efficiency of iPS cells at an industrial scale. Synthego reasons that iPS cells can provide one of the most reliable and accurate models for disease because they allow researchers to create patient-specific variations. Yet iPS cells created through the reprogramming of human adult cells have traditionally been difficult to handle and modify genetically. Synthego’s new offering of iPS cells includes modification by removal of gene function (knockout), single nucleotide variation, protein tagging and other knock-ins, all with the goal of enabling scientists to generate edits at a massive scale to accelerate research and disease modeling.

Read More

Events