Drones Land in the Cell and Gene Therapy Space

Cell and gene therapies could be flying high soon, joining the medical supplies, whole blood products, and even organs being transported by drones. In collaboration with RPS Aerospace, the Italy-based biotech company Anemocyte developed a remotely piloted drone system to securely transport final cell and gene therapy products from manufacturing sites to clinical centers.

Spotlight

Medigene AG

Medigene is a publicly listed (Frankfurt: MDG1, prime standard) biotechnology company headquartered in Martinsried near Munich, Germany. Medigene concentrates on the development of personalized T cell immunotherapies with focus on haematological malignancies.

OTHER ARTICLES
MedTech

5 Biotech Stocks Winning the Coronavirus Race

Article | September 22, 2022

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More
MedTech

Making Predictions by Digitizing Bioprocessing

Article | July 16, 2022

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More
MedTech

Data Analytics: A Groundbreaking Technology in Biotech

Article | October 7, 2022

Biotechnology is a vast discipline of biology that employs diverse biological systems to create solutions that can significantly alter the ways in which they operate across various domains. That said, biotechnology is not a new notion. It has existed for millennia, with ancient civilizations using its earliest incarnations to cultivate crops and create alcoholic beverages. Today, the biotechnology industry has developed by leaps and bounds and has amassed a vast quantity of scientific data through study and research. Given the importance of data in the biotechnology business, it is not difficult to understand why biotech companies utilize data analytics. Modern data analytics tools have made it possible for researchers in the biotech industry to build predictive analytics models and gain knowledge about the most efficient approaches to accomplish their desired goals and objectives. Data analytics is increasingly being adopted by biotech businesses to better understand their industry and foresee any problems down the road. How is Data Analytics Revolutionizing Fields in Biotechnology? Today's business and scientific fields greatly benefit from data. Without the analysis of vast information libraries that provide new insights and enable new innovations, no industry can really advance. Being highly reliant on big data analytics, biotech is not an exception in this regard. With the tools and methods that help scientists systematize their findings and speed up their research for better and safer results, data analytics is making deeper inroads into the biotechnology industry. It is emerging as a crucial link between knowledge and information and is extensively being used for purposes other than just examining the information that is already available. The following are a few of the cutting-edge biotechnology applications of data analytics Genomics and Disease Treatment Pharmaceutical Drug Discovery Drug Recycling and Safety Agriculture and Agri-products Environmental Damage Mitigation Data Analytics Possibilities in Biotechnology With data analytics becoming an integral part of how biotech businesses operate, biotechnologists and related stakeholders need to understand its emergence and crucial role. Data analytics has opened new frontiers in the realm of biotechnology. Thanks to developments in data analytics, research and development activities that once took years may now be accomplished in a matter of months. Also, now scientists have access to biological, social, and environmental insights that can be exploited to create more effective and sustainable products. By understanding the importance of data-related tools and techniques applications, biotech companies are aiming to invest in the popularizing technology to stay updated in the fast-paced biotechnology industry.

Read More
MedTech

Biotech in 2022

Article | July 11, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More

Spotlight

Medigene AG

Medigene is a publicly listed (Frankfurt: MDG1, prime standard) biotechnology company headquartered in Martinsried near Munich, Germany. Medigene concentrates on the development of personalized T cell immunotherapies with focus on haematological malignancies.

Related News

MedTech

GP-write Partners with DNA Script to Accelerate DNA-Writing Technology and Accessibility

Genome Project-write | October 18, 2021

GP-write’s CAD is a one-stop shop for microbe, plant and animal genome writing and redesign. Its automated workflow allows users to rapidly upload a genome, redesign it and synthesize the new sequence. The tool enables researchers to directly order synthetic DNA or related products and services from GP-write’s affiliated members. DNA Script’s SYNTAX System, a benchtop DNA printer powered by their groundbreaking enzymatic DNA synthesis (EDS) technology, enables users to print sequences designed on GP-write’s CAD tool right in their lab. The first-of-its-kind DNA printer expedites workflows, making DNA writing as simple and efficient as next-generation sequencing. DNA Script will host a roundtable at the GP-write 5.0 conference on October 22 at 12:30 p.m. ET to engage attendees in a discussion centered on biosecurity as it relates to emerging technologies, including GP-write’s new CAD tool and DNA Script’s SYNTAX System. “We’re pleased to join GP-write and their industrial partners to drive innovation on the forefront of DNA printing technologies. Just as NGS, or DNA 'read,' and CRISPR, or DNA 'edit,' have brought significant advances to research and clinical care, we believe the broad accessibility of synthetic DNA printing, or DNA 'write,' offered by our SYNTAX System will be equally transformative and power the next bio-revolution.” Thomas Ybert, co-founder and CEO of DNA Script GP-write President and General Counsel, Amy Cayne Schwartz, notes that the organizations are partnering to work toward realizing “a shared vision of a future where writing genomes is facile, democratized and safely accessible.” Schwartz explains that “this will open up new frontiers for development of novel therapeutics and solutions for environmental health.” About Genome Project-write GP-write, conceived as a sequel to the Human Genome Project, applies lessons learned from HGP to pursue scientific exploration fully integrated with the development of genome engineering technologies. The primary goal of the project is to drive dramatic cost reductions and expedite whole-genome writing and redesign over the next decade, empowering researchers to uncover complex biological behavior and reprogram organisms to address defining global challenges in medicine, biotechnology and environmental health. About DNA Script Founded in 2014, DNA Script is a pioneering life sciences technology company developing a new, faster, more powerful and versatile way to design and manufacture nucleic acids. The company has developed an alternative to traditional DNA synthesis called Enzymatic DNA Synthesis, or EDS, allowing this technology to be accessible to labs with the first benchtop enzymatic synthesis instrument, the SYNTAX System. By putting DNA synthesis back in the lab, DNA Script aims to transform life sciences research through innovative technology that gives researchers unprecedented control and autonomy.

Read More

New Device Permits a Closer Look at Previously Inaccessible Areas of the Genome

Technology Networks | November 25, 2019

Expansions of DNA repeats are very hard to analyze. A method developed by researchers at the Max Planck Institute for Molecular Genetics in Berlin allows for a detailed look at these previously inaccessible regions of the genome. It combines nanopore sequencing, stem cell, and CRISPR-Cas technologies. The method could improve the diagnosis of various congenital diseases and cancers in the future. Large parts of the genome consist of monotonous regions where short sections of the genome repeat hundreds or thousands of times. But expansions of these "DNA repeats" in the wrong places can have dramatic consequences, like in patients with Fragile X syndrome, one of the most commonly identifiable hereditary causes of cognitive disability in humans. However, these repetitive regions are still regarded as an unknown territory that cannot be examined appropriately, even with modern methods. A research team led by Franz-Josef Müller at the Max Planck Institute for Molecular Genetics in Berlin and the University Hospital of Schleswig-Holstein in Kiel recently shed light on this inaccessible region of the genome. Müller's team was the first to successfully determine the length of genomic tandem repeats in patient-derived stem cell cultures. The researchers additionally obtained data on the epigenetic state of the repeats by scanning individual DNA molecules. The method, which is based on nanopore sequencing and CRISPR-Cas technologies, opens the door for research into repetitive genomic regions, and the rapid and accurate diagnosis of a range of diseases.

Read More

Synthego Launches Genome Engineering for iPS Cells

GEN | October 23, 2019

Synthego’s newest offering applies genome engineering in order to address a longtime challenge in research and drug development—the dearth of high-quality, physiologically relevant biological models needed for translational medicine. The provider of genome engineering products and services this week launched a genome engineering service for induced pluripotent stem (iPS) cells—an expansion of automated cell editing capabilities that according to Synthego is designed to achieve extremely high editing efficiency of iPS cells at an industrial scale. Synthego reasons that iPS cells can provide one of the most reliable and accurate models for disease because they allow researchers to create patient-specific variations. Yet iPS cells created through the reprogramming of human adult cells have traditionally been difficult to handle and modify genetically. Synthego’s new offering of iPS cells includes modification by removal of gene function (knockout), single nucleotide variation, protein tagging and other knock-ins, all with the goal of enabling scientists to generate edits at a massive scale to accelerate research and disease modeling.

Read More

MedTech

GP-write Partners with DNA Script to Accelerate DNA-Writing Technology and Accessibility

Genome Project-write | October 18, 2021

GP-write’s CAD is a one-stop shop for microbe, plant and animal genome writing and redesign. Its automated workflow allows users to rapidly upload a genome, redesign it and synthesize the new sequence. The tool enables researchers to directly order synthetic DNA or related products and services from GP-write’s affiliated members. DNA Script’s SYNTAX System, a benchtop DNA printer powered by their groundbreaking enzymatic DNA synthesis (EDS) technology, enables users to print sequences designed on GP-write’s CAD tool right in their lab. The first-of-its-kind DNA printer expedites workflows, making DNA writing as simple and efficient as next-generation sequencing. DNA Script will host a roundtable at the GP-write 5.0 conference on October 22 at 12:30 p.m. ET to engage attendees in a discussion centered on biosecurity as it relates to emerging technologies, including GP-write’s new CAD tool and DNA Script’s SYNTAX System. “We’re pleased to join GP-write and their industrial partners to drive innovation on the forefront of DNA printing technologies. Just as NGS, or DNA 'read,' and CRISPR, or DNA 'edit,' have brought significant advances to research and clinical care, we believe the broad accessibility of synthetic DNA printing, or DNA 'write,' offered by our SYNTAX System will be equally transformative and power the next bio-revolution.” Thomas Ybert, co-founder and CEO of DNA Script GP-write President and General Counsel, Amy Cayne Schwartz, notes that the organizations are partnering to work toward realizing “a shared vision of a future where writing genomes is facile, democratized and safely accessible.” Schwartz explains that “this will open up new frontiers for development of novel therapeutics and solutions for environmental health.” About Genome Project-write GP-write, conceived as a sequel to the Human Genome Project, applies lessons learned from HGP to pursue scientific exploration fully integrated with the development of genome engineering technologies. The primary goal of the project is to drive dramatic cost reductions and expedite whole-genome writing and redesign over the next decade, empowering researchers to uncover complex biological behavior and reprogram organisms to address defining global challenges in medicine, biotechnology and environmental health. About DNA Script Founded in 2014, DNA Script is a pioneering life sciences technology company developing a new, faster, more powerful and versatile way to design and manufacture nucleic acids. The company has developed an alternative to traditional DNA synthesis called Enzymatic DNA Synthesis, or EDS, allowing this technology to be accessible to labs with the first benchtop enzymatic synthesis instrument, the SYNTAX System. By putting DNA synthesis back in the lab, DNA Script aims to transform life sciences research through innovative technology that gives researchers unprecedented control and autonomy.

Read More

New Device Permits a Closer Look at Previously Inaccessible Areas of the Genome

Technology Networks | November 25, 2019

Expansions of DNA repeats are very hard to analyze. A method developed by researchers at the Max Planck Institute for Molecular Genetics in Berlin allows for a detailed look at these previously inaccessible regions of the genome. It combines nanopore sequencing, stem cell, and CRISPR-Cas technologies. The method could improve the diagnosis of various congenital diseases and cancers in the future. Large parts of the genome consist of monotonous regions where short sections of the genome repeat hundreds or thousands of times. But expansions of these "DNA repeats" in the wrong places can have dramatic consequences, like in patients with Fragile X syndrome, one of the most commonly identifiable hereditary causes of cognitive disability in humans. However, these repetitive regions are still regarded as an unknown territory that cannot be examined appropriately, even with modern methods. A research team led by Franz-Josef Müller at the Max Planck Institute for Molecular Genetics in Berlin and the University Hospital of Schleswig-Holstein in Kiel recently shed light on this inaccessible region of the genome. Müller's team was the first to successfully determine the length of genomic tandem repeats in patient-derived stem cell cultures. The researchers additionally obtained data on the epigenetic state of the repeats by scanning individual DNA molecules. The method, which is based on nanopore sequencing and CRISPR-Cas technologies, opens the door for research into repetitive genomic regions, and the rapid and accurate diagnosis of a range of diseases.

Read More

Synthego Launches Genome Engineering for iPS Cells

GEN | October 23, 2019

Synthego’s newest offering applies genome engineering in order to address a longtime challenge in research and drug development—the dearth of high-quality, physiologically relevant biological models needed for translational medicine. The provider of genome engineering products and services this week launched a genome engineering service for induced pluripotent stem (iPS) cells—an expansion of automated cell editing capabilities that according to Synthego is designed to achieve extremely high editing efficiency of iPS cells at an industrial scale. Synthego reasons that iPS cells can provide one of the most reliable and accurate models for disease because they allow researchers to create patient-specific variations. Yet iPS cells created through the reprogramming of human adult cells have traditionally been difficult to handle and modify genetically. Synthego’s new offering of iPS cells includes modification by removal of gene function (knockout), single nucleotide variation, protein tagging and other knock-ins, all with the goal of enabling scientists to generate edits at a massive scale to accelerate research and disease modeling.

Read More

Events