CRISPR Heals Mouse Genomic Disease

ETH ZURICH | October 9, 2018

article image
Parents of newborns may be familiar with the metabolic disorder phenylketonuria: in Switzerland, all newborn babies are screened for this genetic disease. If a baby is found to have phenylketonuria, it needs a special diet so that the amino acid phenylalanine does not accumulate in the body. Excess phenylalanine delays mental and motor development. If left untreated, the children may suffer massive mental disability.

Spotlight

Miltenyi Biotec

We’re committed to helping researchers and clinicians make a greater impact on science and health. For more than 25 years, our work has played an essential role in the cell research and cell therapy community. Our innovative tools support research at every level, from basic research to translational research to clinical application.

OTHER ARTICLES

Translating Pharmacomicrobiomics: Three Actionable Challenges/Prospects in 2020

Article | February 24, 2020

The year 2020 marks a decade since the term pharmacomicrobiomics was coined (Rizkallah et al., 2010) to crystallize a century-old concept of mutual interactions between humans, drugs, and the microbial world. The human microbiome, with its immense metabolic potential that exceeds and expands the human metabolic capacities, has the ability to modulate pharmacotherapy by affecting both pharmacokinetics and pharmacodynamics of drug molecules:

Read More

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | February 24, 2020

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Learning How FoxA2 Helps Turn Stem Cells into Organs

Article | February 24, 2020

Scientists at the Perelman School of Medicine at the University of Pennsylvania discovered early on in each cell, FoxA2 simultaneously binds to both the chromosomal proteins and the DNA, opening the flood gates for gene activation. The discovery, “Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones,” published in Nature Genetics, helps untangle mysteries of how embryonic stem cells develop into organs, according to the researchers. “Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon,” write the investigators.

Read More

5 Biotech Stocks Winning the Coronavirus Race

Article | February 24, 2020

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More

Spotlight

Miltenyi Biotec

We’re committed to helping researchers and clinicians make a greater impact on science and health. For more than 25 years, our work has played an essential role in the cell research and cell therapy community. Our innovative tools support research at every level, from basic research to translational research to clinical application.

Events