CRISPR Applications in Plants

| February 14, 2017

article image
Are you a food label reader?  If so, you may have noticed some of your favorite snacks bear the phrase “partially produced with genetic engineering.” This makes sense, given that the soy lectin and corn syrup used in many foods is probably isolated from plants genetically modified to be resistant to a powerful herbicide, glyphosate. Genes, originally isolated from bacteria, were inserted into crop plants, conferring glyphosate tolerance to the soybeans, corn, and other crops. Then, federal regulations followed: requiring that human food made with these plants be labeled “partially produced with genetic engineering.”

Spotlight

Poseida Therapeutics, Inc.

Poseida Therapeutics is translating best-in-class gene editing technologies into lifesaving treatments. The company is developing CAR T-cell immunotherapies for multiple myeloma and other cancer types, as well as gene therapies for orphan diseases. Poseida has assembled a suite of industry-leading gene editing technologies, including the piggyBac™ DNA Modification System, XTN™ TALEN and NextGEN™ CRISPR site-specific nucleases, and Footprint-Free™ Gene Editing.

OTHER ARTICLES

Top 10 biotech IPOs in 2019

Article | February 24, 2020

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | February 24, 2020

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Pfizer, BioNTech Plan Clinical Trial for COVID-19 mRNA Vaccine Candidate

Article | February 24, 2020

Pfizer and BioNTech plan to begin human clinical trials on their lead COVID-19 therapeutic candidate, an mRNA vaccine, by the end of this month, the companies said today, through a collaboration that could generate up to $748 million for the German biotech. The companies announced plans last month to partner on BNT162, the first treatment to emerge from BioNTech’s accelerated COVID-19-focused development program, “Project Lightspeed.” BioNTech and Pfizer established collaboration intended to draw upon BioNTech’s proprietary mRNA vaccine platforms, and Pfizer’s expertise in vaccine research and development, regulatory capabilities, and global manufacturing and distribution network.

Read More

Translating Pharmacomicrobiomics: Three Actionable Challenges/Prospects in 2020

Article | February 24, 2020

The year 2020 marks a decade since the term pharmacomicrobiomics was coined (Rizkallah et al., 2010) to crystallize a century-old concept of mutual interactions between humans, drugs, and the microbial world. The human microbiome, with its immense metabolic potential that exceeds and expands the human metabolic capacities, has the ability to modulate pharmacotherapy by affecting both pharmacokinetics and pharmacodynamics of drug molecules:

Read More

Spotlight

Poseida Therapeutics, Inc.

Poseida Therapeutics is translating best-in-class gene editing technologies into lifesaving treatments. The company is developing CAR T-cell immunotherapies for multiple myeloma and other cancer types, as well as gene therapies for orphan diseases. Poseida has assembled a suite of industry-leading gene editing technologies, including the piggyBac™ DNA Modification System, XTN™ TALEN and NextGEN™ CRISPR site-specific nucleases, and Footprint-Free™ Gene Editing.

Events