Could editing the DNA of embryos with CRISPR help save people who are already alive?

ANDREW JOSEPH | September 16, 2019 | 147 views

Amid last year’s backlash against the birth of the world’s first genetically edited babies, some experts preached prudence: Editing the genomes of embryos, they argued, could one day “cure” people of diseases before they’re even born. But there is another, less-discussed potential application of editing an embryo: tweaking its DNA to help save someone who is already alive. Take the case of Jessica and Keith, a couple in the Bay Area with a 2 1/2-year-old daughter with Fanconi anemia, a genetic disease that leads to the failure of bone marrow to produce red and white blood cells and carries an increased risk of a number of cancers. The best treatment is a stem cell transplant from a sibling, and Jessica and Keith, who asked that their last name not be used, are now in the process of trying to have another child through IVF who can serve as a donor — what’s known as a savior sibling.

Spotlight

US HealthVest

US HealthVest is an innovative behavioral healthcare company that has redefined the psychiatric hospital space. De novo strategies and acquisitions of operating facilities with unrealized potential are the core of the US HealthVest business model. Each hospital is structured to offer multiple service lines in order to serve the needs of specific patient population groups. Our newly constructed and renovated hospitals bring psychiatric and substance abuse care to under-served communities. At US HealthVest, we develop an array of specialized programs in response to community need and partner with existing medical providers to expand services and improve access to care.

OTHER ARTICLES
Medical

Top 10 biotech IPOs in 2019

Article | July 14, 2022

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More
MedTech

Cell Out? Lysate-Based Expression an Option for Personalized Meds

Article | July 13, 2022

Cell-free expression (CFE) is the practice of making a protein without using a living cell. In contrast with cell line-based methods, production is achieved using a fluid containing biological components extracted from a cell, i.e., a lysate. CFE offers potential advantages for biopharma according to Philip Probert, PhD, a senior scientist at the Centre for Process Innovation in the U.K.

Read More
MedTech

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | July 16, 2022

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Selexis Cell Line Development Strategies

Article | February 11, 2020

In today’s biotechnology landscape, to be competitive, meet regulations, and achieve market demands, “we must apply Bioprocessing 4.0,” said Igor Fisch, PhD, CEO, Selexis. In fact, in the last decade, “Selexis has evolved from cloning by limiting dilution to automated cell selection to nanofluidic chips and from monoclonality assessment by statistical calculation to proprietary bioinformatic analysis,” he added. Single-use processing systems are an expanding part of the biomanufacturing world; as such, they are a major component of Bioprocessing 4.0. “At Selexis, we use single use throughout our cell line development workflow. Currently, we have incorporated single-use automated bioprocessing systems such as ambr® and the Beacon® optofluidic platform for accelerated cell line development. By using these systems and optimizing our parameters, we were able to achieve high titers in shake flasks. Additionally, the Beacon systems integrate miniaturized cell culture with high-throughput liquid handling automation and cell imaging. This allows us to control, adjust, and monitor programs at the same time,” noted Fisch.

Read More

Spotlight

US HealthVest

US HealthVest is an innovative behavioral healthcare company that has redefined the psychiatric hospital space. De novo strategies and acquisitions of operating facilities with unrealized potential are the core of the US HealthVest business model. Each hospital is structured to offer multiple service lines in order to serve the needs of specific patient population groups. Our newly constructed and renovated hospitals bring psychiatric and substance abuse care to under-served communities. At US HealthVest, we develop an array of specialized programs in response to community need and partner with existing medical providers to expand services and improve access to care.

Related News

AI, Diagnostics

Genomic Vision Announces launch of FiberSmart

Genomic Vision | March 08, 2023

On March 7, 2023, Genomic Vision, a leading biotech company that develops products and services for the analysis and control of genome changes, launched FiberSmart®, an AI-based technology for automating the quantification and detection of fluorescent signals on combed DNA molecules. Initially available for the analysis of Replication Combing Assays (RCA), Genomic Vision's proprietary method for directly visualizing DNA replication kinetics at the single molecule level. FiberSmart uses advanced AI methods to detect, visualize, and analyze DNA replication kinetics up to 3x more accurately and up to 10x faster than Genomic Vision's existing software solutions. The technology offers a simple and user-friendly interface, facilitating quick analysis of DNA replication signals to deduce essential parameters describing replication kinetics. It is compatible with Genomic Vision's FiberVision® and FiberVision-S® scanners for the RCA assay of the company's proprietary DNA combing technology with various potential applications, including in gene and cell therapy quality control. FiberSmart has been successfully tested and validated by AstraZeneca and the Fritz Lipmann Institute in Germany. Genomic Vision's CEO Aaron Bensimon said, "The launch of FiberSmart® is an important milestone for Genomic Vision as we bring the benefits of powerful AI technology to our users, who can now perform faster and more accurate genomic analysis seamlessly. Our proprietary DNA combing technique has multiple potential applications, particularly in the cell and gene therapy space, where highly accurate genomic analysis is paramount to ensure robust quality standards are met. With the launch of this software we are making it easier for users to exploit the full potential of our proprietary advanced genomic analysis technique." (Source – Business Wire) About Genomic Vision GENOMIC VISION is a leading biotechnology company specializing in the analysis of genome modifications, with a focus on ensuring their quality and safety in genome editing technologies and biomanufacturing processes. It utilizes advanced nanotechnology for DNA analysis to develop cutting-edge diagnostic and drug discovery solutions for cancer and acute diseases at the intersection of genome dynamics and human diseases. The company's approach employs Molecular Combing Technology, a powerful technique that directly visualizes single DNA molecules to detect and quantify changes in the genome landscape and their contribution to pathology.

Read More

Medical

Spotlight Therapeutics Raises $36.5 Million Series B to Advance a Pipeline of Cell-Targeted In Vivo CRISPR Gene Editing Biologics

Spotlight Therapeutics | March 22, 2022

Spotlight Therapeutics, Inc. (“Spotlight”), a biotechnology company applying new insights to develop cell-targeted in vivo CRISPR gene editing biologics, today announced a $36.5M Series B financing to fuel a drive toward the clinic. The financing round was co-led by new investors GordonMD Global Investments and EPIQ Capital Group, with participation from Magnetic Ventures, as well as existing investors GV (formerly Google Ventures) and Emerson Collective and other investors. Craig Gordon, M.D., Founder, CEO and CIO of GordonMD Global Investments, joins the Company’s Board of Directors. Spotlight's proprietary technology platform, TAGE (Targeted Active Gene Editors), is a new class of biologics; highly engineered, modular programmable CRISPR effectors designed to target and edit selected cell types in vivo. This approach circumvents the complexity of packaged viral, viral-like, and nanoparticle delivery systems, opens the door to expanded applications, and holds the promise of increasing patient access. We are excited to help Spotlight advance its pioneering work, which shows promise for cell-targeted delivery of CRISPR effectors in vivo. Spotlight’s TAGE platform could enable significant expansion of CRISPR medicines to a wide range of diseases." Dr. Gordon. This Series B funding is a crucial milestone as we advance our lead first-in-class immuno-oncology (IO) program and progress our pipeline of programs in IO, ophthalmic diseases and hemoglobinopathies,It will enable us to execute our development plan, leveraging Spotlight’s unique cell-targeted in vivo delivery approach, as we aspire to unlock the full potential of gene editing and enable effective one-and-done medicines for patients.” Mary Haak-Frendscho, Ph.D., President and CEO of Spotlight Therapeutics. About Spotlight Therapeutics Established in mid-2018, Spotlight Therapeutics is a privately held biotechnology company advancing a pipeline of cell-targeted in vivo CRISPR gene editing therapies. Spotlight's proprietary technology platform TAGE (Targeted Active Gene Editors) is a new class of biologics, CRISPR effectors engineered for direct delivery in vivo, to achieve cell-selective therapeutic genome editing. Spotlight's pipeline is advancing its modular programmable CRISPR effectors towards clinical studies in immuno-oncology, ophthalmic diseases and hemoglobinopathies. The company is headquartered in Hayward, California.

Read More

Medical

TGen Selects MemVerge to Accelerate Idiopathic Pulmonary Fibrosis Research Discovery with Big Memory Technology

MemVerge | March 21, 2022

MemVerge™, the pioneers of Big Memory software, today announced that TGen, the Translational Genomics Research Institute, an affiliate of City of Hope, has selected MemVerge Memory Machine Big Memory virtualization software to accelerate time to discovery for Idiopathic Pulmonary Fibrosis (IPF), a disease which affects 100,000 people annually in the U.S. Using MemVerge technology, TGen is able to dramatically speed analytical processing by nearly 36% for single-cell RNA sequencing. As a nonprofit medical research institute, TGen researchers process single-cell RNA sequences to characterize cell transcriptomic profiles. The process can take up to six and a half hours to analyze a matrix of 30,000 genes by 114,000 cells. With consistently growing datasets, this processing time was preventing a desired time to discovery. The data required for analysis was simply too large to retain in traditional memory, and scaling capacity with dynamic random-access memory (DRAM) was too costly. TGen has instead deployed memory virtualization technology from MemVerge which virtualizes both DRAM and PMem (persistent memory) memory technologies, to increase the memory pool available for processing without requiring more high-cost DRAM. The solution further speeds TGen's genomics sequencing analysis with Memory Machine ZeroIO in-memory snapshots which capture multi-terabyte data sets at any point for rapid reloads at each stage of processing. The ZeroIO snapshot service is 1,000 times faster than the fastest storage snapshot to SSD and enables TGen to run processing workflows in parallel. This ensures that in the event of a system crash, in-memory snapshots are available to instantly re-start long running jobs without lengthy reloading. By utilizing the snapshotting and cloning capabilities of Memory Machine, we were able to parallelize the processing workflow, As a result, we can now save nearly 36% of computational time while also taking advantage of the big memory nodes. This will save a lot of time in downstream analysis." Glen Otero, Ph.D., Vice President of Scientific Computing at TGen. MemVerge Memory Machine has quickly resulted in research value for TGen, We have removed performance barriers from their research process so that they are able to perform vital, life-saving, research faster than ever possible. Now TGen is expanding the use of Big Memory technology across other research use cases where results and discoveries can produce findings for a healthier tomorrow." Jonathan Jiang, COO of MemVerge. MemVerge Memory Machine makes 100% use of available memory capacity while providing new operational capabilities to memory-centric workloads. Memory Machine answers the need for a modern in-memory computing model to support emerging applications that require real-time analytics, true in-memory computing, and fault-tolerant memory persistence to speed massive processing workloads. About MemVerge MemVerge is pioneering Big Memory Computing and Big Memory Cloud technology for the memory-centric and multi-cloud future. MemVerge® Memory Machine™ is the industry's first software to virtualize memory hardware for fine-grained provisioning of capacity, performance, availability, and mobility. On top of the transparent memory service, Memory Machine provides another industry first, ZeroIO™ in-memory snapshots which can encapsulate terabytes of application state within seconds and enable data management at the speed of memory. The breakthrough capabilities of Big Memory Computing and Big Memory Cloud Technology are opening the door to cloud agility and flexibility for thousands of Big Memory applications.

Read More

AI, Diagnostics

Genomic Vision Announces launch of FiberSmart

Genomic Vision | March 08, 2023

On March 7, 2023, Genomic Vision, a leading biotech company that develops products and services for the analysis and control of genome changes, launched FiberSmart®, an AI-based technology for automating the quantification and detection of fluorescent signals on combed DNA molecules. Initially available for the analysis of Replication Combing Assays (RCA), Genomic Vision's proprietary method for directly visualizing DNA replication kinetics at the single molecule level. FiberSmart uses advanced AI methods to detect, visualize, and analyze DNA replication kinetics up to 3x more accurately and up to 10x faster than Genomic Vision's existing software solutions. The technology offers a simple and user-friendly interface, facilitating quick analysis of DNA replication signals to deduce essential parameters describing replication kinetics. It is compatible with Genomic Vision's FiberVision® and FiberVision-S® scanners for the RCA assay of the company's proprietary DNA combing technology with various potential applications, including in gene and cell therapy quality control. FiberSmart has been successfully tested and validated by AstraZeneca and the Fritz Lipmann Institute in Germany. Genomic Vision's CEO Aaron Bensimon said, "The launch of FiberSmart® is an important milestone for Genomic Vision as we bring the benefits of powerful AI technology to our users, who can now perform faster and more accurate genomic analysis seamlessly. Our proprietary DNA combing technique has multiple potential applications, particularly in the cell and gene therapy space, where highly accurate genomic analysis is paramount to ensure robust quality standards are met. With the launch of this software we are making it easier for users to exploit the full potential of our proprietary advanced genomic analysis technique." (Source – Business Wire) About Genomic Vision GENOMIC VISION is a leading biotechnology company specializing in the analysis of genome modifications, with a focus on ensuring their quality and safety in genome editing technologies and biomanufacturing processes. It utilizes advanced nanotechnology for DNA analysis to develop cutting-edge diagnostic and drug discovery solutions for cancer and acute diseases at the intersection of genome dynamics and human diseases. The company's approach employs Molecular Combing Technology, a powerful technique that directly visualizes single DNA molecules to detect and quantify changes in the genome landscape and their contribution to pathology.

Read More

Medical

Spotlight Therapeutics Raises $36.5 Million Series B to Advance a Pipeline of Cell-Targeted In Vivo CRISPR Gene Editing Biologics

Spotlight Therapeutics | March 22, 2022

Spotlight Therapeutics, Inc. (“Spotlight”), a biotechnology company applying new insights to develop cell-targeted in vivo CRISPR gene editing biologics, today announced a $36.5M Series B financing to fuel a drive toward the clinic. The financing round was co-led by new investors GordonMD Global Investments and EPIQ Capital Group, with participation from Magnetic Ventures, as well as existing investors GV (formerly Google Ventures) and Emerson Collective and other investors. Craig Gordon, M.D., Founder, CEO and CIO of GordonMD Global Investments, joins the Company’s Board of Directors. Spotlight's proprietary technology platform, TAGE (Targeted Active Gene Editors), is a new class of biologics; highly engineered, modular programmable CRISPR effectors designed to target and edit selected cell types in vivo. This approach circumvents the complexity of packaged viral, viral-like, and nanoparticle delivery systems, opens the door to expanded applications, and holds the promise of increasing patient access. We are excited to help Spotlight advance its pioneering work, which shows promise for cell-targeted delivery of CRISPR effectors in vivo. Spotlight’s TAGE platform could enable significant expansion of CRISPR medicines to a wide range of diseases." Dr. Gordon. This Series B funding is a crucial milestone as we advance our lead first-in-class immuno-oncology (IO) program and progress our pipeline of programs in IO, ophthalmic diseases and hemoglobinopathies,It will enable us to execute our development plan, leveraging Spotlight’s unique cell-targeted in vivo delivery approach, as we aspire to unlock the full potential of gene editing and enable effective one-and-done medicines for patients.” Mary Haak-Frendscho, Ph.D., President and CEO of Spotlight Therapeutics. About Spotlight Therapeutics Established in mid-2018, Spotlight Therapeutics is a privately held biotechnology company advancing a pipeline of cell-targeted in vivo CRISPR gene editing therapies. Spotlight's proprietary technology platform TAGE (Targeted Active Gene Editors) is a new class of biologics, CRISPR effectors engineered for direct delivery in vivo, to achieve cell-selective therapeutic genome editing. Spotlight's pipeline is advancing its modular programmable CRISPR effectors towards clinical studies in immuno-oncology, ophthalmic diseases and hemoglobinopathies. The company is headquartered in Hayward, California.

Read More

Medical

TGen Selects MemVerge to Accelerate Idiopathic Pulmonary Fibrosis Research Discovery with Big Memory Technology

MemVerge | March 21, 2022

MemVerge™, the pioneers of Big Memory software, today announced that TGen, the Translational Genomics Research Institute, an affiliate of City of Hope, has selected MemVerge Memory Machine Big Memory virtualization software to accelerate time to discovery for Idiopathic Pulmonary Fibrosis (IPF), a disease which affects 100,000 people annually in the U.S. Using MemVerge technology, TGen is able to dramatically speed analytical processing by nearly 36% for single-cell RNA sequencing. As a nonprofit medical research institute, TGen researchers process single-cell RNA sequences to characterize cell transcriptomic profiles. The process can take up to six and a half hours to analyze a matrix of 30,000 genes by 114,000 cells. With consistently growing datasets, this processing time was preventing a desired time to discovery. The data required for analysis was simply too large to retain in traditional memory, and scaling capacity with dynamic random-access memory (DRAM) was too costly. TGen has instead deployed memory virtualization technology from MemVerge which virtualizes both DRAM and PMem (persistent memory) memory technologies, to increase the memory pool available for processing without requiring more high-cost DRAM. The solution further speeds TGen's genomics sequencing analysis with Memory Machine ZeroIO in-memory snapshots which capture multi-terabyte data sets at any point for rapid reloads at each stage of processing. The ZeroIO snapshot service is 1,000 times faster than the fastest storage snapshot to SSD and enables TGen to run processing workflows in parallel. This ensures that in the event of a system crash, in-memory snapshots are available to instantly re-start long running jobs without lengthy reloading. By utilizing the snapshotting and cloning capabilities of Memory Machine, we were able to parallelize the processing workflow, As a result, we can now save nearly 36% of computational time while also taking advantage of the big memory nodes. This will save a lot of time in downstream analysis." Glen Otero, Ph.D., Vice President of Scientific Computing at TGen. MemVerge Memory Machine has quickly resulted in research value for TGen, We have removed performance barriers from their research process so that they are able to perform vital, life-saving, research faster than ever possible. Now TGen is expanding the use of Big Memory technology across other research use cases where results and discoveries can produce findings for a healthier tomorrow." Jonathan Jiang, COO of MemVerge. MemVerge Memory Machine makes 100% use of available memory capacity while providing new operational capabilities to memory-centric workloads. Memory Machine answers the need for a modern in-memory computing model to support emerging applications that require real-time analytics, true in-memory computing, and fault-tolerant memory persistence to speed massive processing workloads. About MemVerge MemVerge is pioneering Big Memory Computing and Big Memory Cloud technology for the memory-centric and multi-cloud future. MemVerge® Memory Machine™ is the industry's first software to virtualize memory hardware for fine-grained provisioning of capacity, performance, availability, and mobility. On top of the transparent memory service, Memory Machine provides another industry first, ZeroIO™ in-memory snapshots which can encapsulate terabytes of application state within seconds and enable data management at the speed of memory. The breakthrough capabilities of Big Memory Computing and Big Memory Cloud Technology are opening the door to cloud agility and flexibility for thousands of Big Memory applications.

Read More

Events