Connecting Genetics and Heart Disease

| August 5, 2014

article image
Scientists and clinicians have long suspected and recently confirmed that a person’s genetic makeup contributes to the likelihood of their having a heart attack. However, there has remained a gap between our knowledge of genetic indicators and medicine; a gap that Dr. Chad Cowan, of Harvard University, is trying to bridge with stem cell research.According to Dr. Cowan,what we know about genetics is not the full picture. We do not yet fully understand how a given gene functions within a cell or how it affects other genes. He believes the study of induced pluripotent stem cells (iPS cells) – adult stem cells that are reprogrammed in such a way that they can generate most other cell types found within the body – will result in better and more personalized approaches to treat  heart attacks.

Spotlight

Reaction Biology Corporation

Reaction Biology Corp. (“RBC”) is a premier service provider for drug profiling, screening and early-stage drug discovery collaborations. Its proprietary HotSpot technology is an innovative platform for screening/profiling small molecules vs biological target assayable by radioisotope detection. For kinase and transferase enzymes in particular, such assays are the “gold standard”. RBC screens and profiles vs all major classes of epigenetic transferases via the radioisotope approach—HMTs, DNMTs, HATs, and also over 600 kinases. HotSpot assay substrates require no special modifications (e.g. biotin, fluorophors or other tags). Hence biologically relevant substrates may be used, including full nucleosomes, histone proteins or peptides. Since detection does not rely on antibodies, coupling enzymes or fluorescence, major causes of false positives, false negatives and compound interference are eliminated.

OTHER ARTICLES

Ruminating on Bioprocessing 4.0

Article | February 18, 2020

The Bioprocessing 4.0 concept seeks to apply automation and technology to the digital transformation of biologics manufacturing. As the paradigm moves forward, it faces barriers to its adoption, according to Eric Langer, president of BioPlan Associates. “Perhaps the greatest challenges involve unsecured links and adapting the applications to areas where automation is critically needed today,” says Langer. “Unresolved security issues could seriously affect a company’s data in a regulated environment, so they will need to have iron-clad anti-hacking protection in place. Unfortunately, cyber security is not yet a top focus for the industry.”

Read More

Selexis Cell Line Development Strategies

Article | February 11, 2020

In today’s biotechnology landscape, to be competitive, meet regulations, and achieve market demands, “we must apply Bioprocessing 4.0,” said Igor Fisch, PhD, CEO, Selexis. In fact, in the last decade, “Selexis has evolved from cloning by limiting dilution to automated cell selection to nanofluidic chips and from monoclonality assessment by statistical calculation to proprietary bioinformatic analysis,” he added. Single-use processing systems are an expanding part of the biomanufacturing world; as such, they are a major component of Bioprocessing 4.0. “At Selexis, we use single use throughout our cell line development workflow. Currently, we have incorporated single-use automated bioprocessing systems such as ambr® and the Beacon® optofluidic platform for accelerated cell line development. By using these systems and optimizing our parameters, we were able to achieve high titers in shake flasks. Additionally, the Beacon systems integrate miniaturized cell culture with high-throughput liquid handling automation and cell imaging. This allows us to control, adjust, and monitor programs at the same time,” noted Fisch.

Read More

Wisconsin biotech companies could play key roles in long-term economic recovery from COVID-19 pandemic

Article | April 19, 2020

Whether it’s called a modern “Manhattan Project” or a medical moon shot, the concept of long-term economic recovery rests on how confident people are they won’t risk serious illness by venturing forth in public again. Wisconsin stands to be a significant part of such an undertaking, whatever it’s called. The shorter-term debate is well under way over the gradual lifting of COVID-19 emergency rules, such as the now-extended “safer-at-home” order in Wisconsin. At least a dozen states, including regional coalitions on the East and West coasts, are exploring next steps as they seek to balance responses to the virus with calls for reopening the economy, at least, in part. Wisconsin’s ability to shape longer-term responses will come from private and public resources, which range from companies engaged in production of diagnostics.

Read More

Better Purification and Recovery in Bioprocessing

Article | August 2, 2021

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More

Spotlight

Reaction Biology Corporation

Reaction Biology Corp. (“RBC”) is a premier service provider for drug profiling, screening and early-stage drug discovery collaborations. Its proprietary HotSpot technology is an innovative platform for screening/profiling small molecules vs biological target assayable by radioisotope detection. For kinase and transferase enzymes in particular, such assays are the “gold standard”. RBC screens and profiles vs all major classes of epigenetic transferases via the radioisotope approach—HMTs, DNMTs, HATs, and also over 600 kinases. HotSpot assay substrates require no special modifications (e.g. biotin, fluorophors or other tags). Hence biologically relevant substrates may be used, including full nucleosomes, histone proteins or peptides. Since detection does not rely on antibodies, coupling enzymes or fluorescence, major causes of false positives, false negatives and compound interference are eliminated.

Events