Computational advances in the label-free quantification of cancer proteomics data

| January 1, 2019

article image
In recent years, proteomics research has become a popular method for characterizing the functional proteins driving the transformation of malignancy, tracing the large-scale protein alterations induced by an anti-cancer drug, as well as discovering the innovative targets and first-in-class drugs for oncologic disorders.

Spotlight

Australian Biobest Biotechnology Service

Australian Biobest Biotechnology Service (Biobest) is formed with a group of biotech specialists with expertise on lab bench-top biotechnology transfer to market places, biological product (especially on humanised monoclonal antibody and biosimilar) manufacturing experiences, biopharmaceutical and biological reagent marketing, licencing and registration, biomedical instrument (Biacore, Cytometer) services, scientific conference and training services, biotechnological project management and documentation and website design and biotech documentation translation.

OTHER ARTICLES

Wisconsin biotech companies could play key roles in long-term economic recovery from COVID-19 pandemic

Article | April 19, 2020

Whether it’s called a modern “Manhattan Project” or a medical moon shot, the concept of long-term economic recovery rests on how confident people are they won’t risk serious illness by venturing forth in public again. Wisconsin stands to be a significant part of such an undertaking, whatever it’s called. The shorter-term debate is well under way over the gradual lifting of COVID-19 emergency rules, such as the now-extended “safer-at-home” order in Wisconsin. At least a dozen states, including regional coalitions on the East and West coasts, are exploring next steps as they seek to balance responses to the virus with calls for reopening the economy, at least, in part. Wisconsin’s ability to shape longer-term responses will come from private and public resources, which range from companies engaged in production of diagnostics.

Read More

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | February 12, 2020

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Ruminating on Bioprocessing 4.0

Article | February 18, 2020

The Bioprocessing 4.0 concept seeks to apply automation and technology to the digital transformation of biologics manufacturing. As the paradigm moves forward, it faces barriers to its adoption, according to Eric Langer, president of BioPlan Associates. “Perhaps the greatest challenges involve unsecured links and adapting the applications to areas where automation is critically needed today,” says Langer. “Unresolved security issues could seriously affect a company’s data in a regulated environment, so they will need to have iron-clad anti-hacking protection in place. Unfortunately, cyber security is not yet a top focus for the industry.”

Read More

Biotech: Finding The DNA For Success

Article | April 3, 2020

The integration of artificial intelligence within life sciences is making drug discovery and development more innovative, less labor intensive and more cost-effective, says Deloitte’s annual global outlook. According to Deloitte’s 2020 Global Life Sciences Outlook, the biotech sector is at an inflection point. To prepare for the future and remain relevant in the ever-evolving business landscape, biopharma and medtech organizations will be looking for new ways to create value and new metrics to make sense of today’s wealth of data, the report overview says. As data-driven technologies provide biopharma and medtech organizations with treasure troves of information, and automation takes over some mundane tasks, new talent models are emerging based on purpose and meaning. The integration of artificial intelligence (AI) and machine learning approaches within life sciences is making drug discovery and development more innovative, time-effective and cost-effective, the Deloitte report states.

Read More

Spotlight

Australian Biobest Biotechnology Service

Australian Biobest Biotechnology Service (Biobest) is formed with a group of biotech specialists with expertise on lab bench-top biotechnology transfer to market places, biological product (especially on humanised monoclonal antibody and biosimilar) manufacturing experiences, biopharmaceutical and biological reagent marketing, licencing and registration, biomedical instrument (Biacore, Cytometer) services, scientific conference and training services, biotechnological project management and documentation and website design and biotech documentation translation.

Events