Cloning monkeys for research puts humans on a slippery ethical slope

Scientists have many tools at their disposal to study, manipulate and copy genes. Now it appearsresearchers at the Institute of Neuroscience in Shanghai, China, have combined techniques to produce a world first: gene edited, cloned macaque monkeys (Macaca fascicularis). Qiang Sun, a senior researcher in the project and Director of ION's Nonhuman Primate Research Facility.

Spotlight

Evolva SA

Evolva stands for a world where there is less sugar in your food, you and your family are safe from biting ticks, and your cat lives longer—and that’s just for starters.

OTHER ARTICLES
MedTech

Better Purification and Recovery in Bioprocessing

Article | July 12, 2022

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More
MedTech

Next-Gen Gene Therapy to Counter Complex Diseases

Article | September 22, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
MedTech

5 Biotech Stocks Winning the Coronavirus Race

Article | July 13, 2022

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More
MedTech

Top 3 Biotech Clinical Data Management Trends to Watch in 2022

Article | September 22, 2022

Introduction The administration of medical records and data has advanced significantly during the past few decades. Clinical data management, which was once only a small subset of biotech research organizations, has now developed into a mission-critical, specialized unit. In the late 1990s, electronic data capture (EDC) began to alter the traditional function of clinical data management. After that, the data configuration and management of data queries for the EDC system fell under the purview of clinical data management services. Today, clinical data management is not only responsible for managing the clinical data configuration and data queries but also developing and implementing data administration plans, ensuring data accuracy and completeness, and maintaining optimum data security. In recent years, as digital technologies have gained acceptance around the globe, data has become a vital aspect in decision-making across numerous industries, and the life sciences and biotechnology sectors are no exception. Using data has provided granular insights to biotech organizations, assisting them in creating breakthroughs in drug development and medical research and signifying the importance of clinical trial management systems in these medical verticals. The Biggest Biotech Clinical Data Management Trends to Know About Today The future of clinical data management is contingent upon the implementation of systems and regulations. It is imperative for all organizations participating in a medical or life science trial to have transparent rules in place for sharing and retaining patient data. Also, there is a need to have a standardized format for maintaining these records and documents related to trials. This assists biotech organizations in reducing the chances of ambiguity regarding who owns what kind of data or paperwork at any given time. Over the past couple of years, the focus of the life science and biotechnology industries has shifted towards developing more effective medications and therapies, implementing personalized treatment, and finding cures for diseases such as cancer and AIDS. In response to this, a substantial rise in the number of clinical trials is being witnessed globally. As the number of clinical trials continues to accelerate, the spending on these trials rises as well. In response to this, the worldwide cost of conducting clinical trials is anticipated to reach US$ 49.80 billion in 2022. With the transition of the world from traditional to digital, medical professionals and biotech businesses are increasingly shifting towards adopting high-tech and reliable clinical trial management systems for various applications, starting from diagnosis and clinical trials to patient data documentation. But, what are the future trends in biotechnology clinical data management? Let’s discuss. Cloud-Based Clinical Metadata Repositories Automation is emerging as a new frontier in the biotech clinical data management domain, along with other innovative technologies such as artificial intelligence and machine learning. Because of this, life science establishments are witnessing a huge shift from paper-based documentation toward data-based documentation, which is creating mountains of research, compliance, and clinical data. The growing demand for new and more effective medications and drugs is augmenting the need to expedite clinical trials. This is resulting in an increased number of initiatives aimed at optimizing clinical trial processes to prepare and launch successful trials. However, pharmaceutical and biotechnology laboratories are encountering several challenges in collecting, managing, and analyzing metadata due to its complexities. So, what is the best solution to this problem? The answer to this is cloud-based clinical metadata repositories. Clinical research facilities are leveraging advanced, all-in-one, cloud-based clinical metadata repositories to assist them in centralizing and managing metadata; increasing metadata quality, consistency, and accuracy; and speeding up clinical trial management, documentation, and compliance processes. Shift Towards Digital Solutions Electronic Case Report Form Adequate research and accurate data are crucial for a clinical trial to succeed. Whether developing new drugs, medication, or therapies; conducting life science research; or studying the latest clinical trial systems, it is best to use electronic solutions as it reduces the room for mistakes during the transition of clinical data from paper-based format. Realizing this, biotech organizations are shifting towards using electronic case report forms to speed up record retrieval, improve record security, and cut down on operational costs associated with running clinical trials. The electronic case report form assists in lowering the failure rate of the clinical trial, enhancing efficiency, and optimizing security along with improving clinical trial documentation and productivity, further driving its adoption in the medical space. Electronic Clinical Outcome Assessment Electronic clinical outcome assessment is surfacing as one of the fast-growing future trends in biotechnology. It allows clinical trial facilities to automate data entry and improve the reliability of the collected information. The technology enables clinical trial institutions to automatically record patient-provided information about side effects, symptoms, drug timing, and other aspects during the clinical trial for increased precision. It also helps these institutions analyze the results of medication or therapy in clinical trials and lets clinical researchers use medical technologies like biosensor-enabled devices, self-service applications, and medical wearables for evaluation. Hence, biotech clinical facilities are increasingly deploying advanced electronic clinical outcome assessment systems to ensure adherence to protocols and regulations. Clinical Trial Customization The success of a new drug is determined by numerous factors other than its effectiveness, safety, and creativity of its developers, such as a successful clinical trial. Each clinical trial involves a number of decision-making points, and one wrong choice in any of these aspects can jeopardize the success of the entire endeavor. A crucial component of making well-informed decisions is data management, which is a part of clinical study as a whole. Clinical trial customization is emerging as one of the most prominent biotech clinical trial management trends. Every clinical trial is unique and needs a tailored approach to be successful. With the emergence of the trend of personalized treatment around the globe, biotech and pharmaceutical organizations are adopting innovative customized clinical trial management solutions to accelerate the pace of clinical trials and approvals. This is giving clinical researchers innovative ways to come up with new medicines for patients and streamline the clinical data as per the requirements for faster approvals. What Are the Key Clinical Data Management Challenges Faced by Biotech Companies? Groundbreaking medical interventions are of no use without reliable, accurate, and extensive clinical trial data. Without the data, biotech and pharmaceutical companies will not be able to provide the assurance of safety and efficacy required to bring the medication to market. Regulatory bodies such as the Food and Drug Administration (FDA), the Medicines and Healthcare Products Regulatory Agency (MHRA), and others are putting stricter rules in place to ensure the quality of clinical data. In addition, the fast-changing clinical development environment is creating more obstacles for biotech and medical spaces to ensure the accuracy, standard, and completeness of the clinical trial data. Hence, clinical teams are spending valuable time cleaning up data instead of analyzing it. Time spent trying to figure out issues with clinical trial data is detrimental and expensive but also mission-critical. This is because a small issue in the data can lead to numerous consequences, from small delays to calamitous setbacks, making it necessary to rerun clinical trials. This problem will only get more challenging to address as the volume of data and the types of data sources continue to grow. Here are some of the major clinical data management challenges that biotech firms encounter Standardization of Clinical Metadata Stringent Regulatory Compliance Increased Clinical Trial Complexity Mid-Study Changes Why Are Clinical Data Management Systems Garnering Popularity in the Biotech Industry? With the changing regulatory and clinical landscape, biotech and pharmaceutical companies are facing several obstacles in the management of clinical data and clinical trials. In addition, regulatory agencies are moving toward integrated electronic systems, which is making it more and more important for clinical laboratories to change the format of their submissions. Because of this, several biotech clinical labs are focusing on adopting innovative laboratory solutions, such as biotech clinical data management systems, to meet the need for standardized data inputs and replace all manual ways of working with electronic systems. A clinical data management system establishes the framework for error-free data collection and high-quality data submission, resulting in speedier drug discovery and shorter time-to-market. These solutions are gaining huge traction among biotech and pharmaceutical companies, owing to their ability to effectively manage clinical data, accelerate clinical trials, and ensure compliance. Let’s see some of the features of biotech clinical data management software that are most sought after by life-science companies Controlled, standardized data repository. Centralized data analysis and administration. Reduced operational expenditures for clinical data processes. Enhanced process effectiveness. Superior submission quality Compliance with predefined standards. Clinical Data Management Systems: The Future The role of clinical data management systems is evolving at a rapid pace as the life science and medical industries continue to incorporate digital solutions for diverse operations. These systems are being used in a variety of biotech clinical settings, ranging from clinical data compliance to data science and analytics, to help them analyze large and growing volumes of clinical data. Hence, a number of high-tech medical companies are aiming at integrating innovative technologies, such as artificial intelligence and machine learning, into clinical data management software to automate clinical data management tasks, improve clinical data submission, and enhance data quality. These new biotech clinical management technologies are anticipated to help life science laboratories gain a better understanding of diseases and speed up clinical trials in the coming years. FAQ What is a clinical data management system? A clinical data management system (CDMS) is a tool used in clinical research to track, record, and manage clinical trial data across medical establishments such as biotech laboratories. What are the key functions of the biotech clinical data management system? Some of the key functions of biotech clinical data management system are Documentation of Protocols and Regulations Patient Recruitment Real-time Clinical Study Analytics Reporting Investigator Relationship Management Electronic Visit Report Why is a clinical data management system needed for clinical trials today? A clinical data management system helps shorten the time from drug development to marketing by assisting in the collection of high-quality, statistically sound, and accurate data from clinical trials.

Read More

Spotlight

Evolva SA

Evolva stands for a world where there is less sugar in your food, you and your family are safe from biting ticks, and your cat lives longer—and that’s just for starters.

Related News

Medical

Flagship Pioneering Announces the Merger of Two Leading Programmable Medicine Platforms to Form Sail Biomedicines

PR Newswire | October 25, 2023

Flagship Pioneeringannounced the combination of Laronde and Senda Biosciences to launch Sail Biomedicines, a company pioneering the design and deployment of fully programmable medicines to transform patient care. Sail harnesses the power of first-in-category programmable payloads of Endless RNA™ (eRNA), first-in-category programmable nanoparticles, and emerging, proprietary AI technologies, to unlock the comprehensive programming of medicines for the first time. Guillaume Pfefer, Ph.D., MBA, who is also CEO-Partner at Flagship Pioneering, will become Sail's CEO and board member, while John Mendlein, Ph.D., who also serves as Executive Partner, Flagship Pioneering, will become the company's Executive Chairman. Sail unites Laronde and Senda Biosciences, two companies that deliver more than eight years of combined data and multi-product platform building. Senda's platform was the first to leverage a universal chemical code of natural nanoparticles that enables directed and repeatable deployment of payloads, such as translatable RNA, directly to cells and tissues of choice. Laronde pioneered eRNA, a new class of synthetic, translatable RNA that can be programmed to express diverse proteins inside the body, with vast therapeutic potential. "Endless RNA has the potential to create an entirely new class of programmable medicines across therapeutic areas that we will now be able to deliver directly to cells and tissues via deployment molecules with unique properties to confer specificity and greater tolerability," said Mendlein. "We believe these programmable medicines will be greatly enhanced via our proprietary generative AI technologies and rapid prototyping abilities to achieve breakthroughs currently beyond the grasp of the human mind. I look forward to working with the Sail Biomedicines team in this exciting new chapter." "Our deployment platform utilizes natural nanoparticles to shuttle biomolecules into human cells, with unique tropism, potency, and redosability," said Pfefer. "I look forward to leading the integration of these two teams to accelerate the development of new product candidates, build strategic partnerships, and enable diverse value pools, with the goal of swiftly delivering life-changing vaccines and therapies for the people who need them." "Sail Biomedicines builds on the progress made by two leading Flagship bioplatform companies and will enable integrative design for more effective programmable medicines," said Noubar Afeyan, Ph.D., Founder and CEO of Flagship Pioneering. "I am confident the combined leadership team and board will carry forward this company to realize its bold ambitions and ultimately deliver maximum impact for patients." In addition to Mendlein and Pfeffer, the Sail Biomedicines Board of Directors will comprise all current members of the Laronde and Senda Biosciences boards, as follows Pablo Cagnoni, M.D., President and Head of Research & Development, Incyte Jose "Pepe" Carmona, MBA, Chief Financial Officer, ADC Therapeutics Paula Hammond, Ph.D., Institute Professor, Massachusetts Institute of Technology, Head of Department of Chemical Engineering, Massachusetts Institute of Technology Avak Kahvejian, Ph.D., General Partner, Flagship Pioneering Ignacio Martinez, MBA, General Partner, Flagship Pioneering Sheri McCoy, M.S., MBA, Former Vice Chairman, Johnson & Johnson Mary Szela, MBA, CEO and President, TriSalus Life Sciences About Sail Biomedicines Sail Biomedicines is pioneering the integrative design and deployment of fully programmable medicines to transform patient care. Sail's platform combines first-in-class programmable circular RNA technology (Endless RNA™ or eRNA), and an industry-leading platform of programmable nanoparticles, utilizing natural components, to unlock comprehensive programming of medicines for the first time. By leveraging cutting-edge eRNA and nanoparticle deployment technology, Sail is building a wealth of data, enabling unparalleled use of generative AI techniques to identify and design fully programmable medicines that are potent, targeted, versatile, and tunable. Sail was founded by Flagship Pioneering. About Flagship Pioneering Flagship Pioneering is a biotechnology company that invents and builds platform companies, each with the potential for multiple products that transform human health or sustainability. Since its launch in 2000, Flagship has originated and fostered more than 100 scientific ventures, resulting in more than $90 billion in aggregate value. To date, Flagship has deployed over $3.4 billion in capital toward the founding and growth of its pioneering companies alongside more than $26 billion of follow-on investments from other institutions.

Read More

Medical

Integrated DNA Technologies Opens New Therapeutic Manufacturing Facility to Support Growing Demand in Genomic Medicine

businesswire | October 19, 2023

Global genomics solutions provider Integrated DNA Technologies (IDT), an operating company in the Life Sciences segment of Danaher Corporation announced the completion of its new Therapeutic Oligonucleotide Manufacturing facility in Coralville, Iowa. The milestone marks a significant achievement in the company’s 35-year-history—its entrance into the therapeutics space—and enables IDT to manufacture products for research use through to current good manufacturing practice (cGMP) grade cell and gene therapy reagents to provide researchers with a single partner that can help them rapidly transition from the lab to therapeutic development. The 41,000-square-foot-site will produce cGMP cell and gene therapy reagents, including single guide RNAs (sgRNAs) and donor oligos for homology-directed repair (HDR) with additional offerings to follow. These new capabilities and offerings will be supported with comprehensive documentation and testing, a support team, and regulatory guidance to help accelerate researchers’ path to the clinic. “An increasing number of customers are seeking out IDT as a trusted partner for their CRISPR genome editing needs, and are asking us to be the provider that can help them bridge the gap from lab to clinic,” said Demaris Mills, president, IDT. “Now, with our new cGMP manufacturing facility, IDT can provide a complete CRISPR workflow—from design to analysis—that supports cell and gene therapy developers in all stages of therapeutic development, with the same support and expertise they have come to know from IDT. These new manufacturing capabilities, which have been informed by our decades of oligonucleotide synthesis manufacturing expertise, evolves IDT’s business model from Research Use Only to cGMP, and enables us to help more people.” Danaher Vice President and Group Executive Chris Riley added, “The future of genomic medicine hinges on the industrialization of biology to make life-saving therapies more accessible to people. As a pioneer in genome editing, IDT’s continued investments will enable customers to rapidly move from clinical development to commercialization. This new facility is another significant milestone in IDT’s innovation journey, one we envision will have a profound impact in genomic medicine for years to come.” The Therapeutic Oligo Manufacturing facility features ISO 8 cleanrooms, purification suites, chemical distribution and storage rooms, quality control labs, analytical lab space for product testing, ancillary and office spaces and shell space for future expansion. Manufacturing is performed in accordance with ICH Q7 cGMP standards for consistent and reliable quality. The controlled-access building features environmental controls for temperature, humidity and air pressure throughout, supported by an environmental program and continuous monitoring system. The addition of this new facility expands IDT’s global manufacturing footprint and enables the company to provide a range of manufacturing capabilities, including Research Use Only (RUO), large scale RUO, Engineering Run and cGMP (ICH Q7). A Decade of CRISPR Innovation Since 2015, IDT has continued to accelerate the pace of genomics with its complete portfolio of Alt-R™ CRISPR genome editing solutions. Its portfolio includes several first-to-market research products as well as solutions to meet researchers’ complete workflow—from design to analysis—to enable greater quality, simplicity, and cost efficiency. Last year, IDT launched the Alt-R™ HDR Donor Blocks, an improved solution for increasing homology-directed repair (HDR) rates in large fragment knock-in experiments, and expanded access to its Alt-R™ Custom CRISPR gRNA Libraries for drug discovery. In 2021, IDT also unveiled its rhAmpSeq™ CRISPR Analysis System, an end-to-end solution for characterizing and quantifying the full array of on- and off-target genome editing events in CRISPR research products. IDT’s research and development teams have also been at the forefront of CRISPR innovation, with achievements that include the development of multiple proprietary CRISPR reagents such as IDT’s Alt-R™ S.p. HiFi Cas9 Nuclease and the Alt-R L.b. and A.s. Cas12a (Cpf1) Ultra enzymes. Notably, their groundbreaking research and collaborations with scientists around the globe has been published in more than 200 scientific journals as peer-reviewed articles, and is helping to shape the future of genomics and biotechnology. IDT collaborated with M.A. Mortenson Company, a team led by OPN Architects and Barr Engineering Co. on the facility design and construction of its cGMP facility. About IDT For more than 35 years, Integrated DNA Technologies, Inc. (IDT) has been empowering genomics laboratories with an oligonucleotide manufacturing process unlike anyone else in the industry, with the most advanced synthesis, modification, purification, and quality control capabilities available. Since its founding in 1987, IDT has progressed from a leading oligo manufacturer to a genomics solutions provider supporting key application areas such as next generation sequencing, CRISPR genome editing, synthetic biology, digital PCR, and RNA interference. IDT manufactures products used by scientists researching many forms of cancer and most inherited and infectious diseases.

Read More

Medical

Zenfold Leverages Ginkgo Enzyme Services to Enable Veterinary Active Ingredient Development with Sustainable Biology

PR Newswire | October 17, 2023

Ginkgo Bioworks which is building the leading platform for cell programming and biosecurity, and Zenfold Sustainable Technologies, a company focused on developing and manufacturing specialty ingredients using sustainable technologies and precision fermentation, today announced a collaboration to leverage Ginkgo Enzyme Services in its effort to discover an enzyme critical to the manufacturing of veterinary products. This partnership aims to replace traditional chemical processes in veterinary active ingredient production with a sustainable biological method. "This collaboration marks a significant step forward in Zenfold's mission to bring sustainable manufacturing technology to the veterinary medicine industry," said Dr. BSV Prasad, CEO and Managing Director of Zenfold Sustainable Technologies. "By utilizing Ginkgo's expertise and innovation, we are well-positioned to develop a sustainable solution that will have a lasting impact on the Indian market and beyond." "We are excited to partner with Zenfold, which brings a powerful vision of sustainable biotechnology to veterinary active ingredient development. This collaboration will enable us to apply our state-of-the-art enzyme discovery module to enable more innovation in the veterinary medicine space," said Jennifer Wipf, SVP, Head of Commercial, Cell Engineering at Ginkgo. "The project involves creating a broad library of cDNA candidates from a metagenomic collection of billions of enzyme sequences. That's the kind of scale visionary projects like this need, and Ginkgo is committed to scaling up this solution for the betterment of animal health and the environment." About Ginkgo Bioworks Ginkgo Bioworks is the leading horizontal platform for cell programming, providing flexible, end-to-end services that solve challenges for organizations across diverse markets, from food and agriculture to pharmaceuticals to industrial and specialty chemicals. Ginkgo's biosecurity and public health unit, Concentric by Ginkgo, is building global infrastructure for biosecurity to empower governments, communities, and public health leaders to prevent, detect and respond to a wide variety of biological threats. About Zenfold Zenfold Sustainable Technologies is a pioneer in the field of sustainable biology, with a focus on veterinary actives and enzyme supply. This collaboration with Ginkgo Bioworks marks Zenfold's expansion into the global veterinary market and further emphasizes their commitment to environmental responsibility and innovative biological solutions.

Read More

Medical

Flagship Pioneering Announces the Merger of Two Leading Programmable Medicine Platforms to Form Sail Biomedicines

PR Newswire | October 25, 2023

Flagship Pioneeringannounced the combination of Laronde and Senda Biosciences to launch Sail Biomedicines, a company pioneering the design and deployment of fully programmable medicines to transform patient care. Sail harnesses the power of first-in-category programmable payloads of Endless RNA™ (eRNA), first-in-category programmable nanoparticles, and emerging, proprietary AI technologies, to unlock the comprehensive programming of medicines for the first time. Guillaume Pfefer, Ph.D., MBA, who is also CEO-Partner at Flagship Pioneering, will become Sail's CEO and board member, while John Mendlein, Ph.D., who also serves as Executive Partner, Flagship Pioneering, will become the company's Executive Chairman. Sail unites Laronde and Senda Biosciences, two companies that deliver more than eight years of combined data and multi-product platform building. Senda's platform was the first to leverage a universal chemical code of natural nanoparticles that enables directed and repeatable deployment of payloads, such as translatable RNA, directly to cells and tissues of choice. Laronde pioneered eRNA, a new class of synthetic, translatable RNA that can be programmed to express diverse proteins inside the body, with vast therapeutic potential. "Endless RNA has the potential to create an entirely new class of programmable medicines across therapeutic areas that we will now be able to deliver directly to cells and tissues via deployment molecules with unique properties to confer specificity and greater tolerability," said Mendlein. "We believe these programmable medicines will be greatly enhanced via our proprietary generative AI technologies and rapid prototyping abilities to achieve breakthroughs currently beyond the grasp of the human mind. I look forward to working with the Sail Biomedicines team in this exciting new chapter." "Our deployment platform utilizes natural nanoparticles to shuttle biomolecules into human cells, with unique tropism, potency, and redosability," said Pfefer. "I look forward to leading the integration of these two teams to accelerate the development of new product candidates, build strategic partnerships, and enable diverse value pools, with the goal of swiftly delivering life-changing vaccines and therapies for the people who need them." "Sail Biomedicines builds on the progress made by two leading Flagship bioplatform companies and will enable integrative design for more effective programmable medicines," said Noubar Afeyan, Ph.D., Founder and CEO of Flagship Pioneering. "I am confident the combined leadership team and board will carry forward this company to realize its bold ambitions and ultimately deliver maximum impact for patients." In addition to Mendlein and Pfeffer, the Sail Biomedicines Board of Directors will comprise all current members of the Laronde and Senda Biosciences boards, as follows Pablo Cagnoni, M.D., President and Head of Research & Development, Incyte Jose "Pepe" Carmona, MBA, Chief Financial Officer, ADC Therapeutics Paula Hammond, Ph.D., Institute Professor, Massachusetts Institute of Technology, Head of Department of Chemical Engineering, Massachusetts Institute of Technology Avak Kahvejian, Ph.D., General Partner, Flagship Pioneering Ignacio Martinez, MBA, General Partner, Flagship Pioneering Sheri McCoy, M.S., MBA, Former Vice Chairman, Johnson & Johnson Mary Szela, MBA, CEO and President, TriSalus Life Sciences About Sail Biomedicines Sail Biomedicines is pioneering the integrative design and deployment of fully programmable medicines to transform patient care. Sail's platform combines first-in-class programmable circular RNA technology (Endless RNA™ or eRNA), and an industry-leading platform of programmable nanoparticles, utilizing natural components, to unlock comprehensive programming of medicines for the first time. By leveraging cutting-edge eRNA and nanoparticle deployment technology, Sail is building a wealth of data, enabling unparalleled use of generative AI techniques to identify and design fully programmable medicines that are potent, targeted, versatile, and tunable. Sail was founded by Flagship Pioneering. About Flagship Pioneering Flagship Pioneering is a biotechnology company that invents and builds platform companies, each with the potential for multiple products that transform human health or sustainability. Since its launch in 2000, Flagship has originated and fostered more than 100 scientific ventures, resulting in more than $90 billion in aggregate value. To date, Flagship has deployed over $3.4 billion in capital toward the founding and growth of its pioneering companies alongside more than $26 billion of follow-on investments from other institutions.

Read More

Medical

Integrated DNA Technologies Opens New Therapeutic Manufacturing Facility to Support Growing Demand in Genomic Medicine

businesswire | October 19, 2023

Global genomics solutions provider Integrated DNA Technologies (IDT), an operating company in the Life Sciences segment of Danaher Corporation announced the completion of its new Therapeutic Oligonucleotide Manufacturing facility in Coralville, Iowa. The milestone marks a significant achievement in the company’s 35-year-history—its entrance into the therapeutics space—and enables IDT to manufacture products for research use through to current good manufacturing practice (cGMP) grade cell and gene therapy reagents to provide researchers with a single partner that can help them rapidly transition from the lab to therapeutic development. The 41,000-square-foot-site will produce cGMP cell and gene therapy reagents, including single guide RNAs (sgRNAs) and donor oligos for homology-directed repair (HDR) with additional offerings to follow. These new capabilities and offerings will be supported with comprehensive documentation and testing, a support team, and regulatory guidance to help accelerate researchers’ path to the clinic. “An increasing number of customers are seeking out IDT as a trusted partner for their CRISPR genome editing needs, and are asking us to be the provider that can help them bridge the gap from lab to clinic,” said Demaris Mills, president, IDT. “Now, with our new cGMP manufacturing facility, IDT can provide a complete CRISPR workflow—from design to analysis—that supports cell and gene therapy developers in all stages of therapeutic development, with the same support and expertise they have come to know from IDT. These new manufacturing capabilities, which have been informed by our decades of oligonucleotide synthesis manufacturing expertise, evolves IDT’s business model from Research Use Only to cGMP, and enables us to help more people.” Danaher Vice President and Group Executive Chris Riley added, “The future of genomic medicine hinges on the industrialization of biology to make life-saving therapies more accessible to people. As a pioneer in genome editing, IDT’s continued investments will enable customers to rapidly move from clinical development to commercialization. This new facility is another significant milestone in IDT’s innovation journey, one we envision will have a profound impact in genomic medicine for years to come.” The Therapeutic Oligo Manufacturing facility features ISO 8 cleanrooms, purification suites, chemical distribution and storage rooms, quality control labs, analytical lab space for product testing, ancillary and office spaces and shell space for future expansion. Manufacturing is performed in accordance with ICH Q7 cGMP standards for consistent and reliable quality. The controlled-access building features environmental controls for temperature, humidity and air pressure throughout, supported by an environmental program and continuous monitoring system. The addition of this new facility expands IDT’s global manufacturing footprint and enables the company to provide a range of manufacturing capabilities, including Research Use Only (RUO), large scale RUO, Engineering Run and cGMP (ICH Q7). A Decade of CRISPR Innovation Since 2015, IDT has continued to accelerate the pace of genomics with its complete portfolio of Alt-R™ CRISPR genome editing solutions. Its portfolio includes several first-to-market research products as well as solutions to meet researchers’ complete workflow—from design to analysis—to enable greater quality, simplicity, and cost efficiency. Last year, IDT launched the Alt-R™ HDR Donor Blocks, an improved solution for increasing homology-directed repair (HDR) rates in large fragment knock-in experiments, and expanded access to its Alt-R™ Custom CRISPR gRNA Libraries for drug discovery. In 2021, IDT also unveiled its rhAmpSeq™ CRISPR Analysis System, an end-to-end solution for characterizing and quantifying the full array of on- and off-target genome editing events in CRISPR research products. IDT’s research and development teams have also been at the forefront of CRISPR innovation, with achievements that include the development of multiple proprietary CRISPR reagents such as IDT’s Alt-R™ S.p. HiFi Cas9 Nuclease and the Alt-R L.b. and A.s. Cas12a (Cpf1) Ultra enzymes. Notably, their groundbreaking research and collaborations with scientists around the globe has been published in more than 200 scientific journals as peer-reviewed articles, and is helping to shape the future of genomics and biotechnology. IDT collaborated with M.A. Mortenson Company, a team led by OPN Architects and Barr Engineering Co. on the facility design and construction of its cGMP facility. About IDT For more than 35 years, Integrated DNA Technologies, Inc. (IDT) has been empowering genomics laboratories with an oligonucleotide manufacturing process unlike anyone else in the industry, with the most advanced synthesis, modification, purification, and quality control capabilities available. Since its founding in 1987, IDT has progressed from a leading oligo manufacturer to a genomics solutions provider supporting key application areas such as next generation sequencing, CRISPR genome editing, synthetic biology, digital PCR, and RNA interference. IDT manufactures products used by scientists researching many forms of cancer and most inherited and infectious diseases.

Read More

Medical

Zenfold Leverages Ginkgo Enzyme Services to Enable Veterinary Active Ingredient Development with Sustainable Biology

PR Newswire | October 17, 2023

Ginkgo Bioworks which is building the leading platform for cell programming and biosecurity, and Zenfold Sustainable Technologies, a company focused on developing and manufacturing specialty ingredients using sustainable technologies and precision fermentation, today announced a collaboration to leverage Ginkgo Enzyme Services in its effort to discover an enzyme critical to the manufacturing of veterinary products. This partnership aims to replace traditional chemical processes in veterinary active ingredient production with a sustainable biological method. "This collaboration marks a significant step forward in Zenfold's mission to bring sustainable manufacturing technology to the veterinary medicine industry," said Dr. BSV Prasad, CEO and Managing Director of Zenfold Sustainable Technologies. "By utilizing Ginkgo's expertise and innovation, we are well-positioned to develop a sustainable solution that will have a lasting impact on the Indian market and beyond." "We are excited to partner with Zenfold, which brings a powerful vision of sustainable biotechnology to veterinary active ingredient development. This collaboration will enable us to apply our state-of-the-art enzyme discovery module to enable more innovation in the veterinary medicine space," said Jennifer Wipf, SVP, Head of Commercial, Cell Engineering at Ginkgo. "The project involves creating a broad library of cDNA candidates from a metagenomic collection of billions of enzyme sequences. That's the kind of scale visionary projects like this need, and Ginkgo is committed to scaling up this solution for the betterment of animal health and the environment." About Ginkgo Bioworks Ginkgo Bioworks is the leading horizontal platform for cell programming, providing flexible, end-to-end services that solve challenges for organizations across diverse markets, from food and agriculture to pharmaceuticals to industrial and specialty chemicals. Ginkgo's biosecurity and public health unit, Concentric by Ginkgo, is building global infrastructure for biosecurity to empower governments, communities, and public health leaders to prevent, detect and respond to a wide variety of biological threats. About Zenfold Zenfold Sustainable Technologies is a pioneer in the field of sustainable biology, with a focus on veterinary actives and enzyme supply. This collaboration with Ginkgo Bioworks marks Zenfold's expansion into the global veterinary market and further emphasizes their commitment to environmental responsibility and innovative biological solutions.

Read More

Events