Centralized Biometrics for Small Medium Enterprises (SME)

In this week’s blog post, CROS NT examines the benefits of the centralized biometrics outsourcing model for small to medium-sized pharma, biotech and medical device companies. Centralizing clinical data with one specialized vendor can be highly efficient and cost-effective for Sponsors when it comes to managing quality biometrics services, incorporating a technology platform and having real-time analysis of data.

Spotlight

Scientist.com

Scientist.com is the world’s largest marketplace for medical research. We help pharmaceutical scientists discover life-saving medicines in less time and at lower cost. Our mission is to make it possible to cure all human disease by 2050.

OTHER ARTICLES
Medical

Data Analytics: A Groundbreaking Technology in Biotech

Article | August 16, 2022

Biotechnology is a vast discipline of biology that employs diverse biological systems to create solutions that can significantly alter the ways in which they operate across various domains. That said, biotechnology is not a new notion. It has existed for millennia, with ancient civilizations using its earliest incarnations to cultivate crops and create alcoholic beverages. Today, the biotechnology industry has developed by leaps and bounds and has amassed a vast quantity of scientific data through study and research. Given the importance of data in the biotechnology business, it is not difficult to understand why biotech companies utilize data analytics. Modern data analytics tools have made it possible for researchers in the biotech industry to build predictive analytics models and gain knowledge about the most efficient approaches to accomplish their desired goals and objectives. Data analytics is increasingly being adopted by biotech businesses to better understand their industry and foresee any problems down the road. How is Data Analytics Revolutionizing Fields in Biotechnology? Today's business and scientific fields greatly benefit from data. Without the analysis of vast information libraries that provide new insights and enable new innovations, no industry can really advance. Being highly reliant on big data analytics, biotech is not an exception in this regard. With the tools and methods that help scientists systematize their findings and speed up their research for better and safer results, data analytics is making deeper inroads into the biotechnology industry. It is emerging as a crucial link between knowledge and information and is extensively being used for purposes other than just examining the information that is already available. The following are a few of the cutting-edge biotechnology applications of data analytics Genomics and Disease Treatment Pharmaceutical Drug Discovery Drug Recycling and Safety Agriculture and Agri-products Environmental Damage Mitigation Data Analytics Possibilities in Biotechnology With data analytics becoming an integral part of how biotech businesses operate, biotechnologists and related stakeholders need to understand its emergence and crucial role. Data analytics has opened new frontiers in the realm of biotechnology. Thanks to developments in data analytics, research and development activities that once took years may now be accomplished in a matter of months. Also, now scientists have access to biological, social, and environmental insights that can be exploited to create more effective and sustainable products. By understanding the importance of data-related tools and techniques applications, biotech companies are aiming to invest in the popularizing technology to stay updated in the fast-paced biotechnology industry.

Read More
Medical

Better Purification and Recovery in Bioprocessing

Article | July 14, 2022

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More
MedTech

Making Predictions by Digitizing Bioprocessing

Article | July 16, 2022

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More
MedTech

How to Choose a Reliable Biotech Clinical Trial Management System?

Article | October 7, 2022

Introduction The medical and life-science industries are experiencing a robust transformation with the increasing prevalence of various types of diseases, including infectious diseases, chronic disorders, and acute conditions around the world. As a result, a significant rise in demand for more effective therapeutic drugs and bionics is being witnessed, leading to a swift increase in the number of clinical trials. For a successful trial, it is important for biotech companies to ensure the data submitted to regulatory bodies regarding clinical trials is accurate, reliable, and definitive from an ethical point of view. A reliable clinical trial management system plays a vital role in collecting, monitoring, and managing clinical data. The availability of high-quality clinical data also helps clinical research institutions make efficient treatment decisions and provide proper patient care. Hence, a number of biotech companies and research organizations are focusing on leveraging innovative clinical trial management solutions to handle a large amount of data, particularly in multi-center trials, and generate reliable, high-quality, and statistically sound data from clinical trials. However, selecting the most appropriate and reliable clinical trial management system is vital for the clinical trial's success. Let's see some of the steps that will assist these firms in choosing the right CTMS. Key Steps for Selecting Right Biotech Clinical Trial Management System Prioritize Study Needs Considering and prioritizing study needs is a crucial step in choosing the most reliable clinical trial management system for biotech companies. Prioritizing helps them to identify a solution that improves the study's quality and removes uncertainty for researchers when faced with difficult choices. Hence, biotech and life-science organizations should choose a clinical trial system that is simple to use, well-organized, and suitably designed to minimize the number of clicks required to complete a task. Select CTMS with Multiple Integrations Integrated clinical trial management systems provide the best value for the companies’ funds as they guarantee the smooth functioning of research protocols. In addition, integrations are necessary to fully understand the importance and advantages of clinical trial management software for ensuring smooth transitions between site management and data collection. Biotech and clinical research should look for CTMS platforms that can integrate with electronic medical record (EMR) platforms and clinical research process content (CRPC) billing grids. This will allow them to use the same billing designations and ensure compliance while minimizing the need for duplicate processes. Ensure System Compliance and Security Clinical research organizations need to adhere to a plethora of complex regulations in order to ensure compliance with one of the most challenging environments of principles, which is information security and privacy. Security and system compliance are vital aspects of choosing the right CTMS solutions for biotech firms as they assist in building trust and form a part of the system’s duties. While selecting CTMS systems, it is essential for companies engaged in clinical research to ensure that these platforms are able to configure both, group and individual permissions, along with having a data backup and recovery plan for hosted systems. This will allow companies to assess the privacy and security implications of research and anticipate complications that may arise in each phase of the project. Assess the Scalability Choosing a scalable CTMS that can accommodate various types of fluctuations and expansions enables biotech and clinical firms to quickly adapt to fast-changing trends and demand spikes while reducing maintenance costs and enhancing user agility. As scalability also means secure and expanded data storage, these businesses should instead use SaaS solutions than manually manage an ever-growing collection of hard drives. The right CTMS ensures accommodating the firm’s availability requirements without incurring the capital costs associated with expanding a physical infrastructure. The Closing Thought A well-executed and successful clinical trial involves multiple stages and processes. Several quality controls and stringent adherence to regulations are essential for the steps, along with efficient cross-departmental processes and procedures. Incorporating the right CTMS paves the way for paperless data collection, regulatory filing, and fiscal management tools for biotech researchers and administrative personnel.

Read More

Spotlight

Scientist.com

Scientist.com is the world’s largest marketplace for medical research. We help pharmaceutical scientists discover life-saving medicines in less time and at lower cost. Our mission is to make it possible to cure all human disease by 2050.

Related News

Cell and Gene Therapy, Diagnostics

NorthX Biologics, a leading Nordic development and manufacturing organisation announces acquisition of a biologics manufacturing unit from Valneva

Globenewswire | July 04, 2023

NorthX Biologics (‘NorthX’), a leading Nordic development and manufacturing organisation with a focus on advanced biologics, CGT (cell and gene therapy) and vaccines, announced today the successful acquisition of the Stockholm-based Clinical Trial Manufacturing unit from Valneva Sweden, significantly expanding capabilities. The acquisition includes the transfer of a multi-purpose facility, situated in the Stockholm life science cluster, close to Karolinska University Hospital. In addition, 30 staff members who currently operate the facility will also join NorthX. The site and staff have a long history with extensive experience of serving both Valneva internally and also working with external customers on a contract development and manufacturing basis. With expertise in mammalian expression systems and viral vectors, the capabilities complement those of NorthX’s existing business of advanced microbial based manufacturing of proteins and plasmid DNA. The acquired unit excels in process development, scale up, GMP production, quality control analytics, and quality assurance/release and is capable of working with Biosafety Level (BSL) 2/2+ and BSL 3 organisms. With this expansion, NorthX enhances its capabilities and can offer comprehensive services to a wider range of clients globally. Janet Hoogstraate, currently Managing Director of Valneva Sweden, will join the NorthX team. She commented, “I am very proud when looking back at what we have achieved within the unit over the past years and look forward with great enthusiasm to build on NorthX’s position as the go-to manufacturer of advanced biologics in Northern Europe.” Helena Strigård, CEO of NorthX, said, “We are delighted to join forces with our new colleagues in Stockholm to bring new innovative treatments to tomorrow’s patients.” Thomas Eldered, Chairman of NorthX, commented, “This strategic move marks a significant milestone in our growth journey and strengthens NorthX as Sweden’s Innovation Hub. We are now able to work with ATMPs and advanced biologics, including process development and manufacture for clinical trials and commercial requirements.” ABOUT NORTHX BIOLOGICS NorthX Biologics develops and manufactures advanced biologics and has over 30 years of GMP production experience. The team provides process development and GMP manufacturing services with expertise in plasmid DNA, mRNA, proteins, cell therapy and other advanced biologics. Headquartered in the heart of Sweden, the team serves customers worldwide. In 2021 NorthX was recognised and appointed as the national innovation hub for GMP manufacture of advanced therapeutics and vaccines by the Swedish Government and Vinnova, Sweden's innovation agency. NorthX has the ambition to become a leading cell and gene therapy manufacturer and partner of choice for innovative drug development companies. For more information visit www.nxbio.com.

Read More

Research, Diagnostics

Xilio Therapeutics Releases Preliminary Results of XTX101 Phase 1 Trial

Globenewswire | May 26, 2023

Xilio Therapeutics, Inc. (Nasdaq: XLO), a clinical-stage biotechnology company discovering and developing tumor-activated immuno-oncology therapies for people living with cancer, today announced preliminary data from its Phase 1 clinical trial evaluating XTX101, an investigational tumor-activated, Fc-enhanced anti-CTLA-4, in patients with advanced solid tumors. “We are encouraged by the preliminary data from the Phase 1 trial for XTX101 showing evidence of tumor-selective activation,” said Martin Huber, M.D., president and head of research and development at Xilio. “Following treatment with XTX101 monotherapy at the recommended Phase 2 dose of 150 mg once every six weeks, we observed a partial response in a patient with PD-L1 negative advanced non-small cell lung cancer. Importantly, this anti-tumor activity occurred in the absence of meaningful observed activation of the immune system in the periphery, suggesting tumor-selective activation of XTX101. Based on these Phase 1 data, we plan to explore opportunities to evaluate XTX101 in combination with an anti-PD-(L)1 in historically immunotherapy-resistant tumor types.” Data from the Ongoing Phase 1 Clinical Trial for XTX101 As of a data cutoff date of May 2, 2023, 25 patients had been treated with XTX101, including dose levels ranging from 7 mg to 180 mg administered once every three weeks (Q3W) and one dose level at 150 mg administered once every six weeks (Q6W). Of these patients, 20 patients were dosed in monotherapy dose-escalation (Part 1A) and five patients were dosed in monotherapy dose-expansion (Part 1B). Patients had a wide range of advanced and treatment-refractory solid tumors, including colorectal cancer (CRC), non-small cell lung cancer (NSCLC) and pancreatic cancer. In addition, 76% of patients had been previously treated with at least three prior lines of anti-cancer therapy, and 44% had been previously treated with at least one immuno-oncology (I-O) agent. As of the data cutoff date, three patients were continuing on treatment with XTX101, and 22 patients had discontinued treatment with XTX101. Preliminary Safety Data A recommended Phase 2 dose (RP2D) and schedule of 150 mg Q6W was determined based on the favorable preliminary safety, pharmacokinetic (PK) and pharmacodynamic (PD) data for XTX101. At the RP2D, no dose-limiting toxicities were observed, and there was no reported evidence of immune-related endocrine or skin adverse events (AEs) that are commonly associated with systemically active anti-CTLA-4 agents. In addition, evidence of effective masking of XTX101 was demonstrated by low levels of unmasked drug detected in peripheral circulation, and XTX101 achieved target PK exposure at the RP2D, reaching the targeted area under the curve (AUC) and peak concentration (Cmax). As of the data cutoff date: Across all dosing levels and dosing intervals, no Grade 4 or Grade 5 treatment-related AEs were reported by investigators. Among seven patients who received XTX101 administered at the RP2D of 150 mg on a Q6W dosing schedule, the most common treatment-related AEs (≥10% incidence) of any grade reported by investigators were diarrhea (14%), fatigue (14%) and decreased appetite (14%). In these patients, no treatment-related colitis or infusion related reaction of any grade was observed. Investigators reported only one Grade 3 treatment-related AE of diarrhea, which occurred after two doses and resolved after five days without steroid use. This patient tolerated two additional doses of XTX101 after dose reduction to 75 mg Q6W without any symptom recurrence. At the RP2D of 150 mg Q6W, this was the only patient with a dose reduction due to an AE, and no patients discontinued treatment due to a treatment-related AE. Among 18 patients who received XTX101 administered on a Q3W dosing schedule, the most common treatment-related AEs (≥10% incidence) of any grade reported by investigators were diarrhea (28%), colitis (28%), infusion related reaction (28%), nausea (17%), vomiting (17%) and abdominal pain (11%). Of these, investigators reported the following Grade 3 treatment-related AEs: diarrhea (6%), colitis (22%) and infusion related reaction (17%). Infusion related reactions were associated with antidrug antibodies. Across all dose levels administered Q3W, two patients had dose reductions due to AEs, and four patients discontinued treatment due to an infusion related reaction. Preliminary Anti-Tumor Activity A partial response was observed at nine weeks in one patient with advanced PD-L1 negative NSCLC with hepatic metastases treated with XTX101 at the 150 mg Q6W dose level and confirmed after the data cutoff date at week 27. The only treatment-related AE reported for this patient was Grade 1 fatigue. In addition, PD markers for anti-CTLA-4 reported for this patient showed minimal immune activation in peripheral circulation, demonstrating evidence of tumor-selective activation of XTX101. The patient is currently continuing on treatment with XTX101. Clinical Development Plan for XTX101 Enrollment in monotherapy dose-expansion (Part 1B) of the Phase 1 trial is currently ongoing, with the goal of further characterizing the safety, PK and PD of XTX101 at the RP2D of 150 mg Q6W. In addition, mandatory tumor biopsies will be obtained from patients in Part 1B to examine intra-tumoral PK and PD for XTX101. Xilio plans to continue to explore strategic opportunities to advance XTX101 with a partner beyond the current Phase 1 monotherapy cohorts, including in potential Phase 1 dose escalation evaluating XTX101 in combination with a PD-(L)1 and in a potential Phase 2 trial evaluating XTX101 in combination with a PD-(L)1 in patients with microsatellite stable CRC. About XTX101 (anti-CTLA-4) and the Phase 1 Clinical Trial XTX101 is an investigational tumor-activated, Fc-enhanced anti-CTLA-4 monoclonal antibody designed to deplete regulatory T cells when activated (unmasked) in the tumor microenvironment (TME). The Phase 1 clinical trial is a first-in-human, multi-center, open-label trial designed to evaluate the safety and tolerability of XTX101 for the treatment of patients with advanced solid tumors. The primary outcome measures were the incidence of dose-limiting toxicities (DLTs) and the incidence of treatment-related adverse events, and changes in clinical laboratory abnormalities. Please refer to NCT04896697 on www.clinicaltrials.gov for additional details. About Xilio Therapeutics Xilio Therapeutics is a clinical-stage biotechnology company discovering and developing tumor-activated immuno-oncology (I-O) therapies with the goal of significantly improving outcomes for people living with cancer without the systemic side effects of current I-O treatments. The company is using its proprietary geographically precise solutions (GPS) platform to build a pipeline of novel, tumor-activated molecules, including cytokines and other biologics, which are designed to optimize their therapeutic index and localize anti-tumor activity within the tumor microenvironment. Xilio is currently advancing multiple programs for tumor-activated I-O treatments in clinical development, as well as programs in preclinical development. Learn more by visiting www.xiliotx.com and follow us on Twitter (@xiliotx) and LinkedIn (Xilio Therapeutics, Inc.).

Read More

Cell and Gene Therapy

Matica Bio Announces Joint Research Agreement with Sartorius for the Development of Advanced Viral Vector Manufacturing Technology

Matica Biotechnology, Inc. | October 19, 2021

Matica Biotechnology, Inc, (Matica Bio) a contract development and manufacturing organization (CDMO) specializing in the clinical and commercial production of cell and gene therapies, today announced a joint research agreement (JRA) with Sartorius, a leading international partner of the biopharmaceutical industry. Under this agreement, Matica Bio and Sartorius will work on a number of studies together to streamline and optimize PAT technologies, automation software, and single-use platforms offered by Sartorius for large scale vector production. Michael Stewart, Chief Technology Officer at Matica Bio explained, "The generation of in-line real-time process data is one of the most significant obstacles to achieving consistent, high-producing viral vector titers during development that can be translatable to large scale production. In many respects, what is going on inside a bioreactor or within downstream operations is still a black box to us." Mr. Stewart continued, "Matica Bio's development, manufacturing and quality teams have decades of viral vector production experience. Applying our expertise together with Sartorius' industry-leading single-use and PAT technologies will allow us to provide more robust, consistent results for our clients, guiding informed decision-making throughout the manufacturing process and accelerating the overall development timeline to the clinic and market." "We are extremely excited to initiate this partnership with Sartorius. Our number one priority is to deliver for our clients. Our expert staff will be working to integrate more fully automated processes leading to an increase in the speed of information flow and a reduction in preventable errors. The end result will be increased product yields, higher quality as well as improved flexibility and responsiveness to our clients' ever-changing needs." Dr. Yun Jeong Song, Chief Executive Officer of Matica Bio The JRA with Sartorius underscores Matica Bio's commitment to applying integrated technology and bioprocess solutions to address production complexities like reduction of labor and risk while improving output efficiencies in the production of advanced therapies, including viral vector products. Together Sartorius and Matica Bio are dedicated to solving the challenges of large-scale cell culture and viral vector production, improving manufacturability and reducing the costs of novel cell and gene therapies, oncolytic vectors and vaccines. About Matica Biotechnology, Inc. Matica Bio is a contract development and manufacturing organization for gene therapies, cell therapies, vaccines, oncolytic vectors and other advanced biotherapeutic products. Our GMP facility in College Station, TX is designed for the rapid development, scale-up and production of clinical and commercial supply. Matica Bio offers process development, GMP production, product release and stability assessment, together with the quality oversight and regulatory guidance necessary to ensure our clients' success.

Read More

Cell and Gene Therapy, Diagnostics

NorthX Biologics, a leading Nordic development and manufacturing organisation announces acquisition of a biologics manufacturing unit from Valneva

Globenewswire | July 04, 2023

NorthX Biologics (‘NorthX’), a leading Nordic development and manufacturing organisation with a focus on advanced biologics, CGT (cell and gene therapy) and vaccines, announced today the successful acquisition of the Stockholm-based Clinical Trial Manufacturing unit from Valneva Sweden, significantly expanding capabilities. The acquisition includes the transfer of a multi-purpose facility, situated in the Stockholm life science cluster, close to Karolinska University Hospital. In addition, 30 staff members who currently operate the facility will also join NorthX. The site and staff have a long history with extensive experience of serving both Valneva internally and also working with external customers on a contract development and manufacturing basis. With expertise in mammalian expression systems and viral vectors, the capabilities complement those of NorthX’s existing business of advanced microbial based manufacturing of proteins and plasmid DNA. The acquired unit excels in process development, scale up, GMP production, quality control analytics, and quality assurance/release and is capable of working with Biosafety Level (BSL) 2/2+ and BSL 3 organisms. With this expansion, NorthX enhances its capabilities and can offer comprehensive services to a wider range of clients globally. Janet Hoogstraate, currently Managing Director of Valneva Sweden, will join the NorthX team. She commented, “I am very proud when looking back at what we have achieved within the unit over the past years and look forward with great enthusiasm to build on NorthX’s position as the go-to manufacturer of advanced biologics in Northern Europe.” Helena Strigård, CEO of NorthX, said, “We are delighted to join forces with our new colleagues in Stockholm to bring new innovative treatments to tomorrow’s patients.” Thomas Eldered, Chairman of NorthX, commented, “This strategic move marks a significant milestone in our growth journey and strengthens NorthX as Sweden’s Innovation Hub. We are now able to work with ATMPs and advanced biologics, including process development and manufacture for clinical trials and commercial requirements.” ABOUT NORTHX BIOLOGICS NorthX Biologics develops and manufactures advanced biologics and has over 30 years of GMP production experience. The team provides process development and GMP manufacturing services with expertise in plasmid DNA, mRNA, proteins, cell therapy and other advanced biologics. Headquartered in the heart of Sweden, the team serves customers worldwide. In 2021 NorthX was recognised and appointed as the national innovation hub for GMP manufacture of advanced therapeutics and vaccines by the Swedish Government and Vinnova, Sweden's innovation agency. NorthX has the ambition to become a leading cell and gene therapy manufacturer and partner of choice for innovative drug development companies. For more information visit www.nxbio.com.

Read More

Research, Diagnostics

Xilio Therapeutics Releases Preliminary Results of XTX101 Phase 1 Trial

Globenewswire | May 26, 2023

Xilio Therapeutics, Inc. (Nasdaq: XLO), a clinical-stage biotechnology company discovering and developing tumor-activated immuno-oncology therapies for people living with cancer, today announced preliminary data from its Phase 1 clinical trial evaluating XTX101, an investigational tumor-activated, Fc-enhanced anti-CTLA-4, in patients with advanced solid tumors. “We are encouraged by the preliminary data from the Phase 1 trial for XTX101 showing evidence of tumor-selective activation,” said Martin Huber, M.D., president and head of research and development at Xilio. “Following treatment with XTX101 monotherapy at the recommended Phase 2 dose of 150 mg once every six weeks, we observed a partial response in a patient with PD-L1 negative advanced non-small cell lung cancer. Importantly, this anti-tumor activity occurred in the absence of meaningful observed activation of the immune system in the periphery, suggesting tumor-selective activation of XTX101. Based on these Phase 1 data, we plan to explore opportunities to evaluate XTX101 in combination with an anti-PD-(L)1 in historically immunotherapy-resistant tumor types.” Data from the Ongoing Phase 1 Clinical Trial for XTX101 As of a data cutoff date of May 2, 2023, 25 patients had been treated with XTX101, including dose levels ranging from 7 mg to 180 mg administered once every three weeks (Q3W) and one dose level at 150 mg administered once every six weeks (Q6W). Of these patients, 20 patients were dosed in monotherapy dose-escalation (Part 1A) and five patients were dosed in monotherapy dose-expansion (Part 1B). Patients had a wide range of advanced and treatment-refractory solid tumors, including colorectal cancer (CRC), non-small cell lung cancer (NSCLC) and pancreatic cancer. In addition, 76% of patients had been previously treated with at least three prior lines of anti-cancer therapy, and 44% had been previously treated with at least one immuno-oncology (I-O) agent. As of the data cutoff date, three patients were continuing on treatment with XTX101, and 22 patients had discontinued treatment with XTX101. Preliminary Safety Data A recommended Phase 2 dose (RP2D) and schedule of 150 mg Q6W was determined based on the favorable preliminary safety, pharmacokinetic (PK) and pharmacodynamic (PD) data for XTX101. At the RP2D, no dose-limiting toxicities were observed, and there was no reported evidence of immune-related endocrine or skin adverse events (AEs) that are commonly associated with systemically active anti-CTLA-4 agents. In addition, evidence of effective masking of XTX101 was demonstrated by low levels of unmasked drug detected in peripheral circulation, and XTX101 achieved target PK exposure at the RP2D, reaching the targeted area under the curve (AUC) and peak concentration (Cmax). As of the data cutoff date: Across all dosing levels and dosing intervals, no Grade 4 or Grade 5 treatment-related AEs were reported by investigators. Among seven patients who received XTX101 administered at the RP2D of 150 mg on a Q6W dosing schedule, the most common treatment-related AEs (≥10% incidence) of any grade reported by investigators were diarrhea (14%), fatigue (14%) and decreased appetite (14%). In these patients, no treatment-related colitis or infusion related reaction of any grade was observed. Investigators reported only one Grade 3 treatment-related AE of diarrhea, which occurred after two doses and resolved after five days without steroid use. This patient tolerated two additional doses of XTX101 after dose reduction to 75 mg Q6W without any symptom recurrence. At the RP2D of 150 mg Q6W, this was the only patient with a dose reduction due to an AE, and no patients discontinued treatment due to a treatment-related AE. Among 18 patients who received XTX101 administered on a Q3W dosing schedule, the most common treatment-related AEs (≥10% incidence) of any grade reported by investigators were diarrhea (28%), colitis (28%), infusion related reaction (28%), nausea (17%), vomiting (17%) and abdominal pain (11%). Of these, investigators reported the following Grade 3 treatment-related AEs: diarrhea (6%), colitis (22%) and infusion related reaction (17%). Infusion related reactions were associated with antidrug antibodies. Across all dose levels administered Q3W, two patients had dose reductions due to AEs, and four patients discontinued treatment due to an infusion related reaction. Preliminary Anti-Tumor Activity A partial response was observed at nine weeks in one patient with advanced PD-L1 negative NSCLC with hepatic metastases treated with XTX101 at the 150 mg Q6W dose level and confirmed after the data cutoff date at week 27. The only treatment-related AE reported for this patient was Grade 1 fatigue. In addition, PD markers for anti-CTLA-4 reported for this patient showed minimal immune activation in peripheral circulation, demonstrating evidence of tumor-selective activation of XTX101. The patient is currently continuing on treatment with XTX101. Clinical Development Plan for XTX101 Enrollment in monotherapy dose-expansion (Part 1B) of the Phase 1 trial is currently ongoing, with the goal of further characterizing the safety, PK and PD of XTX101 at the RP2D of 150 mg Q6W. In addition, mandatory tumor biopsies will be obtained from patients in Part 1B to examine intra-tumoral PK and PD for XTX101. Xilio plans to continue to explore strategic opportunities to advance XTX101 with a partner beyond the current Phase 1 monotherapy cohorts, including in potential Phase 1 dose escalation evaluating XTX101 in combination with a PD-(L)1 and in a potential Phase 2 trial evaluating XTX101 in combination with a PD-(L)1 in patients with microsatellite stable CRC. About XTX101 (anti-CTLA-4) and the Phase 1 Clinical Trial XTX101 is an investigational tumor-activated, Fc-enhanced anti-CTLA-4 monoclonal antibody designed to deplete regulatory T cells when activated (unmasked) in the tumor microenvironment (TME). The Phase 1 clinical trial is a first-in-human, multi-center, open-label trial designed to evaluate the safety and tolerability of XTX101 for the treatment of patients with advanced solid tumors. The primary outcome measures were the incidence of dose-limiting toxicities (DLTs) and the incidence of treatment-related adverse events, and changes in clinical laboratory abnormalities. Please refer to NCT04896697 on www.clinicaltrials.gov for additional details. About Xilio Therapeutics Xilio Therapeutics is a clinical-stage biotechnology company discovering and developing tumor-activated immuno-oncology (I-O) therapies with the goal of significantly improving outcomes for people living with cancer without the systemic side effects of current I-O treatments. The company is using its proprietary geographically precise solutions (GPS) platform to build a pipeline of novel, tumor-activated molecules, including cytokines and other biologics, which are designed to optimize their therapeutic index and localize anti-tumor activity within the tumor microenvironment. Xilio is currently advancing multiple programs for tumor-activated I-O treatments in clinical development, as well as programs in preclinical development. Learn more by visiting www.xiliotx.com and follow us on Twitter (@xiliotx) and LinkedIn (Xilio Therapeutics, Inc.).

Read More

Cell and Gene Therapy

Matica Bio Announces Joint Research Agreement with Sartorius for the Development of Advanced Viral Vector Manufacturing Technology

Matica Biotechnology, Inc. | October 19, 2021

Matica Biotechnology, Inc, (Matica Bio) a contract development and manufacturing organization (CDMO) specializing in the clinical and commercial production of cell and gene therapies, today announced a joint research agreement (JRA) with Sartorius, a leading international partner of the biopharmaceutical industry. Under this agreement, Matica Bio and Sartorius will work on a number of studies together to streamline and optimize PAT technologies, automation software, and single-use platforms offered by Sartorius for large scale vector production. Michael Stewart, Chief Technology Officer at Matica Bio explained, "The generation of in-line real-time process data is one of the most significant obstacles to achieving consistent, high-producing viral vector titers during development that can be translatable to large scale production. In many respects, what is going on inside a bioreactor or within downstream operations is still a black box to us." Mr. Stewart continued, "Matica Bio's development, manufacturing and quality teams have decades of viral vector production experience. Applying our expertise together with Sartorius' industry-leading single-use and PAT technologies will allow us to provide more robust, consistent results for our clients, guiding informed decision-making throughout the manufacturing process and accelerating the overall development timeline to the clinic and market." "We are extremely excited to initiate this partnership with Sartorius. Our number one priority is to deliver for our clients. Our expert staff will be working to integrate more fully automated processes leading to an increase in the speed of information flow and a reduction in preventable errors. The end result will be increased product yields, higher quality as well as improved flexibility and responsiveness to our clients' ever-changing needs." Dr. Yun Jeong Song, Chief Executive Officer of Matica Bio The JRA with Sartorius underscores Matica Bio's commitment to applying integrated technology and bioprocess solutions to address production complexities like reduction of labor and risk while improving output efficiencies in the production of advanced therapies, including viral vector products. Together Sartorius and Matica Bio are dedicated to solving the challenges of large-scale cell culture and viral vector production, improving manufacturability and reducing the costs of novel cell and gene therapies, oncolytic vectors and vaccines. About Matica Biotechnology, Inc. Matica Bio is a contract development and manufacturing organization for gene therapies, cell therapies, vaccines, oncolytic vectors and other advanced biotherapeutic products. Our GMP facility in College Station, TX is designed for the rapid development, scale-up and production of clinical and commercial supply. Matica Bio offers process development, GMP production, product release and stability assessment, together with the quality oversight and regulatory guidance necessary to ensure our clients' success.

Read More

Events