Calorie Restriction as a Means to Improve Surgical Outcomes

STEVE HILL | January 9, 2017

article image
The long-term response to calorie restriction has long been of interest to the aging research community, and particularly in the past few decades as the tools of biotechnology allowed for a more detailed analysis of the metabolic changes that accompany a reduced calorie intake. A restricted diet extends healthy life spans in near all species tested to date, though to a much greater extent in short-lived species than in long-lived species such as our own. Considerable effort is presently devoted to the development of drugs that can replicate some fraction of calorie restriction — more effort than is merited in my opinion, given that the optimal result for extension of human life span achieved via calorie restriction mimetics will be both hard to achieve safely and very limited in comparison to the gains possible through rejuvenation therapies after the SENS model. Repairing damage within the existing system should be expected to outdo attempts to change the system in order to slow the accumulation of damage, in both efficiency and size of result.

Spotlight

SMALTIS

SMALTIS is a company created by two young doctors of Bacteriology, Sophie Guénard and Cédric Muller, and its mission is assisting public and private research laboratories in carrying out their projects. Various individualised services in bacteriology and molecular biology are available, from producing inactivation mutants to determining the levels of resistance to all types of drugs through the construction of vectors or production of plasmids.

OTHER ARTICLES

Cell Out? Lysate-Based Expression an Option for Personalized Meds

Article | February 18, 2020

Cell-free expression (CFE) is the practice of making a protein without using a living cell. In contrast with cell line-based methods, production is achieved using a fluid containing biological components extracted from a cell, i.e., a lysate. CFE offers potential advantages for biopharma according to Philip Probert, PhD, a senior scientist at the Centre for Process Innovation in the U.K.

Read More

Better Purification and Recovery in Bioprocessing

Article | August 2, 2021

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More

Wisconsin biotech companies could play key roles in long-term economic recovery from COVID-19 pandemic

Article | April 19, 2020

Whether it’s called a modern “Manhattan Project” or a medical moon shot, the concept of long-term economic recovery rests on how confident people are they won’t risk serious illness by venturing forth in public again. Wisconsin stands to be a significant part of such an undertaking, whatever it’s called. The shorter-term debate is well under way over the gradual lifting of COVID-19 emergency rules, such as the now-extended “safer-at-home” order in Wisconsin. At least a dozen states, including regional coalitions on the East and West coasts, are exploring next steps as they seek to balance responses to the virus with calls for reopening the economy, at least, in part. Wisconsin’s ability to shape longer-term responses will come from private and public resources, which range from companies engaged in production of diagnostics.

Read More

Defense biotech research looks to eliminate bacteria causing traveler’s diarrhea, reduce jet lag duration

Article | April 9, 2020

World traveler‘s will rejoice at the idea of a seemingly magical device that would guarantee they never suffer from the all-too-familiar stomach issues that come from traveling internationally while reducing jet lag at the same time. But it’s not just privileged globetrotters that would benefit from a device that eliminates the bacteria associated with the so-called Montezuma’s Revenge. In 2016, more than 230,000 children around the world died from some of the same types of bacteria as those that cause traveler’s diarrhea, and the bacteria mainly come from unsafe “drinking water, poor sanitation and malnutrition,” according to Oxford University’s Our World In Data portal. On Monday, DARPA announced it was researching an “implantable or ingestible bioelectronic carrier” that would eliminate the five major bacteria associated with traveler’s diarrhea.

Read More

Spotlight

SMALTIS

SMALTIS is a company created by two young doctors of Bacteriology, Sophie Guénard and Cédric Muller, and its mission is assisting public and private research laboratories in carrying out their projects. Various individualised services in bacteriology and molecular biology are available, from producing inactivation mutants to determining the levels of resistance to all types of drugs through the construction of vectors or production of plasmids.

Events