Calling for a change in STEM culture to retain underrepresented students

Women and students of color are widely underrepresented in the majority of STEM fields. Most discussions take a ‘deficit’ approach to the problem, citing deficits of minority groups as a reason for discrepancy. However a new study looks at how instructional style and perceived professor care influence decisions of students from underrepresented groups to major in STEM.

Spotlight

St. David's HealthCare

With more than 110 sites across Central Texas, St. David’s HealthCare includes seven of the area’s leading hospitals and is one of the largest health systems in Texas. The organization was recognized with a Malcolm Baldrige National Quality Award—the nation’s highest presidential honor for performance excellence in 2014. St. David’s HealthCare is the third-largest private employer in the Austin area, with more than 9,000 employees.

OTHER ARTICLES
Medical

Top 3 Biotech Clinical Data Management Trends to Watch in 2022

Article | July 14, 2022

Introduction The administration of medical records and data has advanced significantly during the past few decades. Clinical data management, which was once only a small subset of biotech research organizations, has now developed into a mission-critical, specialized unit. In the late 1990s, electronic data capture (EDC) began to alter the traditional function of clinical data management. After that, the data configuration and management of data queries for the EDC system fell under the purview of clinical data management services. Today, clinical data management is not only responsible for managing the clinical data configuration and data queries but also developing and implementing data administration plans, ensuring data accuracy and completeness, and maintaining optimum data security. In recent years, as digital technologies have gained acceptance around the globe, data has become a vital aspect in decision-making across numerous industries, and the life sciences and biotechnology sectors are no exception. Using data has provided granular insights to biotech organizations, assisting them in creating breakthroughs in drug development and medical research and signifying the importance of clinical trial management systems in these medical verticals. The Biggest Biotech Clinical Data Management Trends to Know About Today The future of clinical data management is contingent upon the implementation of systems and regulations. It is imperative for all organizations participating in a medical or life science trial to have transparent rules in place for sharing and retaining patient data. Also, there is a need to have a standardized format for maintaining these records and documents related to trials. This assists biotech organizations in reducing the chances of ambiguity regarding who owns what kind of data or paperwork at any given time. Over the past couple of years, the focus of the life science and biotechnology industries has shifted towards developing more effective medications and therapies, implementing personalized treatment, and finding cures for diseases such as cancer and AIDS. In response to this, a substantial rise in the number of clinical trials is being witnessed globally. As the number of clinical trials continues to accelerate, the spending on these trials rises as well. In response to this, the worldwide cost of conducting clinical trials is anticipated to reach US$ 49.80 billion in 2022. With the transition of the world from traditional to digital, medical professionals and biotech businesses are increasingly shifting towards adopting high-tech and reliable clinical trial management systems for various applications, starting from diagnosis and clinical trials to patient data documentation. But, what are the future trends in biotechnology clinical data management? Let’s discuss. Cloud-Based Clinical Metadata Repositories Automation is emerging as a new frontier in the biotech clinical data management domain, along with other innovative technologies such as artificial intelligence and machine learning. Because of this, life science establishments are witnessing a huge shift from paper-based documentation toward data-based documentation, which is creating mountains of research, compliance, and clinical data. The growing demand for new and more effective medications and drugs is augmenting the need to expedite clinical trials. This is resulting in an increased number of initiatives aimed at optimizing clinical trial processes to prepare and launch successful trials. However, pharmaceutical and biotechnology laboratories are encountering several challenges in collecting, managing, and analyzing metadata due to its complexities. So, what is the best solution to this problem? The answer to this is cloud-based clinical metadata repositories. Clinical research facilities are leveraging advanced, all-in-one, cloud-based clinical metadata repositories to assist them in centralizing and managing metadata; increasing metadata quality, consistency, and accuracy; and speeding up clinical trial management, documentation, and compliance processes. Shift Towards Digital Solutions Electronic Case Report Form Adequate research and accurate data are crucial for a clinical trial to succeed. Whether developing new drugs, medication, or therapies; conducting life science research; or studying the latest clinical trial systems, it is best to use electronic solutions as it reduces the room for mistakes during the transition of clinical data from paper-based format. Realizing this, biotech organizations are shifting towards using electronic case report forms to speed up record retrieval, improve record security, and cut down on operational costs associated with running clinical trials. The electronic case report form assists in lowering the failure rate of the clinical trial, enhancing efficiency, and optimizing security along with improving clinical trial documentation and productivity, further driving its adoption in the medical space. Electronic Clinical Outcome Assessment Electronic clinical outcome assessment is surfacing as one of the fast-growing future trends in biotechnology. It allows clinical trial facilities to automate data entry and improve the reliability of the collected information. The technology enables clinical trial institutions to automatically record patient-provided information about side effects, symptoms, drug timing, and other aspects during the clinical trial for increased precision. It also helps these institutions analyze the results of medication or therapy in clinical trials and lets clinical researchers use medical technologies like biosensor-enabled devices, self-service applications, and medical wearables for evaluation. Hence, biotech clinical facilities are increasingly deploying advanced electronic clinical outcome assessment systems to ensure adherence to protocols and regulations. Clinical Trial Customization The success of a new drug is determined by numerous factors other than its effectiveness, safety, and creativity of its developers, such as a successful clinical trial. Each clinical trial involves a number of decision-making points, and one wrong choice in any of these aspects can jeopardize the success of the entire endeavor. A crucial component of making well-informed decisions is data management, which is a part of clinical study as a whole. Clinical trial customization is emerging as one of the most prominent biotech clinical trial management trends. Every clinical trial is unique and needs a tailored approach to be successful. With the emergence of the trend of personalized treatment around the globe, biotech and pharmaceutical organizations are adopting innovative customized clinical trial management solutions to accelerate the pace of clinical trials and approvals. This is giving clinical researchers innovative ways to come up with new medicines for patients and streamline the clinical data as per the requirements for faster approvals. What Are the Key Clinical Data Management Challenges Faced by Biotech Companies? Groundbreaking medical interventions are of no use without reliable, accurate, and extensive clinical trial data. Without the data, biotech and pharmaceutical companies will not be able to provide the assurance of safety and efficacy required to bring the medication to market. Regulatory bodies such as the Food and Drug Administration (FDA), the Medicines and Healthcare Products Regulatory Agency (MHRA), and others are putting stricter rules in place to ensure the quality of clinical data. In addition, the fast-changing clinical development environment is creating more obstacles for biotech and medical spaces to ensure the accuracy, standard, and completeness of the clinical trial data. Hence, clinical teams are spending valuable time cleaning up data instead of analyzing it. Time spent trying to figure out issues with clinical trial data is detrimental and expensive but also mission-critical. This is because a small issue in the data can lead to numerous consequences, from small delays to calamitous setbacks, making it necessary to rerun clinical trials. This problem will only get more challenging to address as the volume of data and the types of data sources continue to grow. Here are some of the major clinical data management challenges that biotech firms encounter Standardization of Clinical Metadata Stringent Regulatory Compliance Increased Clinical Trial Complexity Mid-Study Changes Why Are Clinical Data Management Systems Garnering Popularity in the Biotech Industry? With the changing regulatory and clinical landscape, biotech and pharmaceutical companies are facing several obstacles in the management of clinical data and clinical trials. In addition, regulatory agencies are moving toward integrated electronic systems, which is making it more and more important for clinical laboratories to change the format of their submissions. Because of this, several biotech clinical labs are focusing on adopting innovative laboratory solutions, such as biotech clinical data management systems, to meet the need for standardized data inputs and replace all manual ways of working with electronic systems. A clinical data management system establishes the framework for error-free data collection and high-quality data submission, resulting in speedier drug discovery and shorter time-to-market. These solutions are gaining huge traction among biotech and pharmaceutical companies, owing to their ability to effectively manage clinical data, accelerate clinical trials, and ensure compliance. Let’s see some of the features of biotech clinical data management software that are most sought after by life-science companies Controlled, standardized data repository. Centralized data analysis and administration. Reduced operational expenditures for clinical data processes. Enhanced process effectiveness. Superior submission quality Compliance with predefined standards. Clinical Data Management Systems: The Future The role of clinical data management systems is evolving at a rapid pace as the life science and medical industries continue to incorporate digital solutions for diverse operations. These systems are being used in a variety of biotech clinical settings, ranging from clinical data compliance to data science and analytics, to help them analyze large and growing volumes of clinical data. Hence, a number of high-tech medical companies are aiming at integrating innovative technologies, such as artificial intelligence and machine learning, into clinical data management software to automate clinical data management tasks, improve clinical data submission, and enhance data quality. These new biotech clinical management technologies are anticipated to help life science laboratories gain a better understanding of diseases and speed up clinical trials in the coming years. FAQ What is a clinical data management system? A clinical data management system (CDMS) is a tool used in clinical research to track, record, and manage clinical trial data across medical establishments such as biotech laboratories. What are the key functions of the biotech clinical data management system? Some of the key functions of biotech clinical data management system are Documentation of Protocols and Regulations Patient Recruitment Real-time Clinical Study Analytics Reporting Investigator Relationship Management Electronic Visit Report Why is a clinical data management system needed for clinical trials today? A clinical data management system helps shorten the time from drug development to marketing by assisting in the collection of high-quality, statistically sound, and accurate data from clinical trials.

Read More
MedTech

Biotech in 2022

Article | July 12, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More
MedTech

Expansion of BioPharma: Opportunities and Investments

Article | July 20, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
MedTech

Immunology: A New Frontier in Medical Science

Article | July 16, 2022

Introduction Recent developments in the bioengineering of monoclonal antibodies (mAbs) have revolutionized the treatment of numerous rheumatic and immunological disorders. Currently, several immunological disorders are successfully being targeted and treated using innovative medical techniques such as immunotherapy. Leading companies are increasingly investing in research activities to expand the usage and application of immunology for the treatment of various infectious diseases, including multiple sclerosis, inflammatory bowel disorders, lupus, and psoriasis, leading companies are increasingly investing in research activities. Today, the efforts of researchers in immunology, with a long history of study and research, have borne fruit, as bioengineered mAbs are now being employed in clinical practices. Accelerating Investments: Paving the Way for Immunology The increasing prevalence of infectious diseases, cancer, and immune-mediated inflammatory disorders (IMIDs) is raising the need for more precise classification and an in-depth understanding of the pathology underlying these ailments. Numerous leaders in the biotechnology domain are thus focusing on undertaking numerous strategies, such as new facility launches and collaborations, to address the need by finding deeper inroads into immunology and its use in disease treatments. For instance, in 2022, the University of Texas MD Anderson Cancer Center announced the launch of a visionary research and innovation hub, the James P. Allison Institute, to find new roads in immunotherapy, develop new treatments, and foster groundbreaking science. These developments will result in better diagnosis through the use of selective biomarkers, and early detection of fatal diseases and their treatment, which will prevent complications from happening. Also, the identification of high-risk populations through a deeper understanding of genetic and environmental factors can assist in the prevention of disease through immunotherapy. The Way Forward Immunology has led to the development of biotechnology, making it possible to develop novel drugs and vaccines, as well as diagnostic tests, that can be used to prevent, diagnose, and treat a wide range of autoimmune, infectious, and cancerous diseases. With the rapid advancement in technology and the integration of artificial intelligence, immunology is finding its way into an array of domains and industries, encompassing several research areas including medicine, pharmaceuticals, agriculture, and space. Today, not only researchers but also leading biotech and pharmaceutical companies have recognized that conventional therapies with pharmaceutical and chemical products are being replaced by products derived from immunology. This is because they work well for health problems, are environmentally friendly, and are also emerging as a wealth-generating business in the medical field.

Read More

Spotlight

St. David's HealthCare

With more than 110 sites across Central Texas, St. David’s HealthCare includes seven of the area’s leading hospitals and is one of the largest health systems in Texas. The organization was recognized with a Malcolm Baldrige National Quality Award—the nation’s highest presidential honor for performance excellence in 2014. St. David’s HealthCare is the third-largest private employer in the Austin area, with more than 9,000 employees.

Related News

Medical

Personalis and ClearNote Health Announce Partnership to Advance Epigenomic Technology

Personalis, Inc. | February 05, 2024

Personalis, Inc. a leader in advanced genomics for cancer, and ClearNote Health, Inc., a pioneer in epigenomic technologies, today unveiled an alliance through which Personalis will expand its pharmaceutical service offerings by distributing ClearNote’s cutting-edge epigenomic 5-hydroxymethylcytosine (5hmC) platform. “We have built a unique pharma channel based on our industry-leading tissue and MRD assays and ClearNote Health’s blood-based epigenomic approach is complementary to our offering as it helps our customers deepen their understanding of a patient’s response to immunotherapies,” said Chris Hall, CEO and President of Personalis. “Commercial partnerships such as this broaden our portfolio and are expected to appeal to a wide range of biopharma customers and accelerate our revenue growth.” Echoing this sentiment, Dave Mullarkey, CEO of ClearNote Health, remarked, “Partnering with Personalis presents an excellent opportunity to bring our 5hmC technology to the forefront of cancer research. This alliance is a testament to the synergy between our two companies, enabling us to expand our reach and significantly impact the biopharmaceutical industry. Together, we can accelerate the development of personalized therapies and make a real difference in the lives of patients.” ClearNote Health’s Epigenomics Platform represents a groundbreaking advance in cancer detection, offering real-time insights into disease-specific pathways. By tracking changes in 5hmC levels coupled with artificial intelligence-based analytical methods, the platform can detect cancer earlier, monitor disease progression, understand mechanisms of resistance, and identify promising drug targets and biomarkers. These insights are invaluable for optimizing drug development programs and delivering more effective treatments to patients. The Epigenomics Platform identifies changes in gene activation and gene regulation by labeling specific changes in the 5hmC landscape from plasma-derived cell-free DNA. This rich biological information, as part of clinical trials, enables the monitoring of cancer therapies in real time and contributes to an understanding of drug resistance mechanisms. The partnership marks a pivotal moment in cancer research, leveraging the strengths of both companies to offer unparalleled solutions in the biopharmaceutical industry. About ClearNote Heath, Inc. ClearNote Health is a cancer detection company focused on enabling people at risk for high-mortality cancers to live longer, healthier lives. Utilizing a standard blood draw, the company applies its proprietary epigenomic platform, combining biology and artificial intelligence, to identify DNA-based changes in biology as cancer develops. With lead programs in non-invasive early detection of pancreatic and ovarian cancers in patients at the highest risk for these diseases, ClearNote Health identifies cancers before they progress and when patients are most likely to benefit from treatment. ClearNote Health’s first commercially available test is the Avantect™ Pancreatic Cancer Test, which detects the presence of pancreatic cancer signals in patients at high risk of the disease, including those recently diagnosed with Type 2 diabetes. ClearNote Health is headquartered in San Diego, with additional presence in the San Francisco Bay area and internationally. The company’s CLIA- and CAP-accredited laboratory is located in San Diego, Calif. About Personalis, Inc. At Personalis, we are transforming the active management of cancer through breakthrough personalized testing. We aim to drive a new paradigm for cancer management, guiding care from biopsy through the life of the patient. Our highly sensitive assays combine tumor-and-normal profiling with proprietary algorithms to deliver advanced insights even as cancer evolves over time. Our products are designed to detect minimal residual disease (MRD) and recurrence at the earliest time points, enable the selection of targeted therapies based on ultra-comprehensive genomic profiling, and enhance biomarker strategy for drug development. Personalis is based in Fremont, California.

Read More

Medical

Jnana Therapeutics Announces Positive Clinical Proof of Concept Achieved with JNT-517, a Potential First-in-Class Oral Treatment for PKU

Jnana Therapeutics, Inc. | February 02, 2024

Jnana Therapeutics, a clinical-stage biotechnology company leveraging its next-generation chemoproteomics platform to discover medicines for challenging-to-drug targets, today announced positive, statistically significant interim results from its ongoing clinical study of JNT-517 in individuals with phenylketonuria (PKU). JNT-517, a small molecule inhibitor of the phenylalanine (Phe) transporter SLC6A19, is being evaluated as a potential first-in-class oral treatment for PKU across all ages and genotypes. On the basis of these positive interim results, Jnana has adapted the Phase 1b trial design to support the potential for accelerated progression of JNT-517. “There is an urgent need for an oral, safe, and efficacious therapy for the more than 60% of individuals with PKU not currently on therapy. Across the spectrum of mild to severe disease, our results demonstrate a robust, sustained reduction in blood Phe levels, the registrational endpoint for PKU, giving us high confidence in the path forward for JNT-517,” said George Vratsanos, M.D., Chief Medical Officer and Head of R&D at Jnana Therapeutics. “We are also encouraged by this validation of the power of our RAPID platform to discover small molecules with compelling clinical benefit against challenging-to-drug targets.” JNT-517 is being studied in a randomized, double-blind, placebo-controlled trial in individuals with mild to severe PKU. Following a 28-day screening period focused predominantly on ensuring an average blood Phe level of >600µM, study participants were randomized with no run-in period to 75mg of JNT-517 twice daily (BID) or placebo. The planned interim analysis was based on 13 participants, eight dosed with JNT-517 and five dosed with placebo over 28 days, and demonstrated the following results JNT-517 led to a statistically significant (p=0.0019 vs. placebo) mean blood Phe reduction from baseline of 51%, measured per-protocol at day 28. A high response rate was seen where seven of eight (88%) treated participants achieved >30% reduction in blood Phe from baseline; five of eight (63%) achieved >45% reduction; and two of eight (25%) achieved >65% reduction. A robust response was seen across participants treated with JNT-517 irrespective of baseline blood Phe levels, which ranged from 593µM to 1,526µM with a mean of 1,124µM. A rapid onset of effect was observed with significant blood Phe reduction achieved within seven days after commencing dosing, which was sustained through the full 28 days of dosing. JNT-517 was safe and well tolerated with no serious adverse events and no clinically significant changes in laboratory parameters, consistent with the safety profile demonstrated in the Phase 1a healthy volunteer study. "JNT-517 represents a completely new therapeutic approach that could transform the current treatment paradigm in PKU, in particular for individuals with severe, or classical, PKU where there is the highest unmet medical need,” said Cary O. Harding, M.D., study investigator and Professor of Molecular and Medical Genetics at Oregon Health and Science University School of Medicine. “I am encouraged by the clinical results to date and look forward to working with Jnana and the PKU community to continue to advance this program.” Based on these interim results, Jnana has adapted the protocol of the ongoing trial to include dose exploration. Jnana expects topline data from the second dose cohort in mid-2024 and plans to submit full data from the two dose cohorts for presentation at a scientific meeting in the second half of 2024. Jnana anticipates the company will engage regulators in the second half of 2024 and seek to advance JNT-517 directly into a pivotal Phase 3 study in the first half of 2025. JNT-517 Phase 1b Clinical Trial The ongoing clinical program includes a randomized, double-blind, placebo-controlled trial evaluating the safety, tolerability, pharmacokinetics, and effect on blood and urinary Phe of JNT-517 dosed over a four-week period in individuals diagnosed with PKU. The study dosed its first participant with PKU in August 2023 and is enrolling individuals aged 18 to 65 at clinical sites in the United States and Australia. For more information about the study, please see clinicaltrials.gov (NCT05781399). About JNT-517 JNT-517 is a selective small molecule inhibitor of the Phe transporter SLC6A19 that has the potential to be a first-in-class oral therapy used to treat any person with PKU, regardless of age or genotype. JNT-517 acts at a novel, cryptic allosteric site to block kidney reabsorption of Phe and offers a promising new approach to reduce blood Phe levels. The U.S. Food and Drug Administration granted JNT-517 Rare Pediatric Disease Designation in late 2022. About PKU PKU is a rare inherited metabolic disorder caused by a deficiency of the enzyme phenylalanine hydroxylase (PAH). This enzyme is required for the breakdown of phenylalanine (Phe), an amino acid found in all protein-containing foods. When PAH is deficient or defective, Phe accumulates to abnormally high levels in the blood. If left untreated, toxic levels of Phe in the blood can result in progressive and severe neurological impairment and neuropsychological complications. The SLC transporter SLC6A19 is responsible for kidney reabsorption of Phe back into the bloodstream, and the inhibition of SLC6A19 offers a novel, oral approach for the treatment of PKU by facilitating urinary excretion of excess Phe. About Jnana Therapeutics Jnana Therapeutics is a clinical-stage biotechnology company leveraging its next-generation RAPID chemoproteomics platform to discover medicines for highly validated, challenging-to-drug targets to treat diseases with high unmet needs. Jnana is focused on developing first- and best-in-class therapies to treat a wide range of diseases, including rare diseases and immune-mediated diseases. Jnana’s wholly owned lead program, JNT-517, which targets an allosteric site on the phenylalanine transporter SLC6A19, is a potential first-in-class oral approach for the treatment of PKU, a rare genetic metabolic disease. Located in Boston, Jnana brings together scientific leaders in small molecule drug discovery and development, a highly experienced management team, and the backing of leading life science investors Bain Capital Life Sciences, RA Capital Management, Polaris Partners, Versant Ventures, Avalon Ventures, Pfizer Ventures, and AbbVie Ventures.

Read More

Medical

Twist Bioscience Expands Express Genes Rapid Synthesis Service

Twist Bioscience Corporation | January 30, 2024

Twist Bioscience Corporation a company enabling customers to succeed through its offering of high-quality synthetic DNA using its silicon platform, today announced the expansion of Twist Express Genes, a new leading gene synthesis service with an order to shipping turnaround starting at five business days1, to include larger DNA preparations up to 1 milligram. The Express Genes offering, initially launched in November 2023, now extends to larger midiprep (10μg to 100 μg) and maxiprep (100μg to 1mg) DNA preparations. As with Twist standard speed Clonal Genes, all Twist Express Genes are NGS-verified as clonally perfect. “Since the initial launch of our Express Genes service in November, we have received positive and enthusiastic feedback from existing customers on our consistent and rapid turnaround time. By expanding Express Genes to include midiprep and maxiprep, we can now offer rapid gene synthesis at all gene prep scales, enabling large scale experimentation for pharmaceutical, biotechnology, academic and industrial chemical researchers,” said Emily M. Leproust, Ph.D., CEO and co-founder of Twist Bioscience. “With the expanded offering of Twist Express Genes, more researchers can gain access to Twist genes fast and at scale, including those using alternative providers and those cloning their own genes. The ability to order and receive synthetic DNA fast and at scale means more time for cutting-edge research, more make-test-learn cycles, and an accelerated journey to game-changing discoveries.” Twist leverages its ability to miniaturize the chemical reaction to create DNA using its silicon-based DNA synthesis platform along with expertise, software, optimized processes and the expanded layout of its Wilsonville facility to deliver Clonal Genes and Gene Fragments at scale and with rapid turnaround times. Twist’s Express Genes are offered with dynamic pricing, which reflects market demand and manufacturing capacity in a responsive premium price. Customers are able to quickly and easily place orders for Express Genes through Twist’s ecommerce platform. Twist Express Genes Twist Express Genes are 0.3kb to 5.0kb in length. Due to scale enabled by Twist’s platform, orders of any size both small and large can be filled, and as with standard speed Twist Clonal Genes, Twist Express Genes are NGS sequence-verified as one hundred percent accurate. Twist Express Genes can be cloned into catalog vectors or custom vectors so that customers can move right to experimentation. They can also be shipped in customers’ preferred delivery formats, including tubes and plates. For more information and product specifications click here. Current turnaround times for some Twist Bioscience products Express Genes1 (50ng-10µg): starting at 5 business days, now for up to 10µg Standard Clonal Genes (50ng-10µg): starting at 10 business days Express Genes1 (10µg-1mg): starting at 8 business days Standard Clonal Genes (10µg-1mg): starting at 13 business days 1 Express Clonal Genes ship in 5-7 business days. DNA prep sizes including 10 μg - 100 μg, and 100 μg - 1 mg may incur an additional 3-5 days for synthesis. Orders placed outside of the US will incur additional delivery turnaround time. Express Genes orders that require new custom vector onboarding will incur an additional 1-2 weeks for processing. About Twist Bioscience Corporation Twist Bioscience is a leading and rapidly growing synthetic biology and genomics company that has developed a disruptive DNA synthesis platform to industrialize the engineering of biology. The core of the platform is a proprietary technology that pioneers a new method of manufacturing synthetic DNA by “writing” DNA on a silicon chip. Twist is leveraging its unique technology to manufacture a broad range of synthetic DNA-based products, including synthetic genes, tools for next-generation sequencing (NGS) preparation, and antibody libraries for drug discovery and development. Twist is also pursuing longer-term opportunities in digital data storage in DNA and biologics drug discovery. Twist makes products for use across many industries including healthcare, industrial chemicals, agriculture and academic research.

Read More

Medical

Personalis and ClearNote Health Announce Partnership to Advance Epigenomic Technology

Personalis, Inc. | February 05, 2024

Personalis, Inc. a leader in advanced genomics for cancer, and ClearNote Health, Inc., a pioneer in epigenomic technologies, today unveiled an alliance through which Personalis will expand its pharmaceutical service offerings by distributing ClearNote’s cutting-edge epigenomic 5-hydroxymethylcytosine (5hmC) platform. “We have built a unique pharma channel based on our industry-leading tissue and MRD assays and ClearNote Health’s blood-based epigenomic approach is complementary to our offering as it helps our customers deepen their understanding of a patient’s response to immunotherapies,” said Chris Hall, CEO and President of Personalis. “Commercial partnerships such as this broaden our portfolio and are expected to appeal to a wide range of biopharma customers and accelerate our revenue growth.” Echoing this sentiment, Dave Mullarkey, CEO of ClearNote Health, remarked, “Partnering with Personalis presents an excellent opportunity to bring our 5hmC technology to the forefront of cancer research. This alliance is a testament to the synergy between our two companies, enabling us to expand our reach and significantly impact the biopharmaceutical industry. Together, we can accelerate the development of personalized therapies and make a real difference in the lives of patients.” ClearNote Health’s Epigenomics Platform represents a groundbreaking advance in cancer detection, offering real-time insights into disease-specific pathways. By tracking changes in 5hmC levels coupled with artificial intelligence-based analytical methods, the platform can detect cancer earlier, monitor disease progression, understand mechanisms of resistance, and identify promising drug targets and biomarkers. These insights are invaluable for optimizing drug development programs and delivering more effective treatments to patients. The Epigenomics Platform identifies changes in gene activation and gene regulation by labeling specific changes in the 5hmC landscape from plasma-derived cell-free DNA. This rich biological information, as part of clinical trials, enables the monitoring of cancer therapies in real time and contributes to an understanding of drug resistance mechanisms. The partnership marks a pivotal moment in cancer research, leveraging the strengths of both companies to offer unparalleled solutions in the biopharmaceutical industry. About ClearNote Heath, Inc. ClearNote Health is a cancer detection company focused on enabling people at risk for high-mortality cancers to live longer, healthier lives. Utilizing a standard blood draw, the company applies its proprietary epigenomic platform, combining biology and artificial intelligence, to identify DNA-based changes in biology as cancer develops. With lead programs in non-invasive early detection of pancreatic and ovarian cancers in patients at the highest risk for these diseases, ClearNote Health identifies cancers before they progress and when patients are most likely to benefit from treatment. ClearNote Health’s first commercially available test is the Avantect™ Pancreatic Cancer Test, which detects the presence of pancreatic cancer signals in patients at high risk of the disease, including those recently diagnosed with Type 2 diabetes. ClearNote Health is headquartered in San Diego, with additional presence in the San Francisco Bay area and internationally. The company’s CLIA- and CAP-accredited laboratory is located in San Diego, Calif. About Personalis, Inc. At Personalis, we are transforming the active management of cancer through breakthrough personalized testing. We aim to drive a new paradigm for cancer management, guiding care from biopsy through the life of the patient. Our highly sensitive assays combine tumor-and-normal profiling with proprietary algorithms to deliver advanced insights even as cancer evolves over time. Our products are designed to detect minimal residual disease (MRD) and recurrence at the earliest time points, enable the selection of targeted therapies based on ultra-comprehensive genomic profiling, and enhance biomarker strategy for drug development. Personalis is based in Fremont, California.

Read More

Medical

Jnana Therapeutics Announces Positive Clinical Proof of Concept Achieved with JNT-517, a Potential First-in-Class Oral Treatment for PKU

Jnana Therapeutics, Inc. | February 02, 2024

Jnana Therapeutics, a clinical-stage biotechnology company leveraging its next-generation chemoproteomics platform to discover medicines for challenging-to-drug targets, today announced positive, statistically significant interim results from its ongoing clinical study of JNT-517 in individuals with phenylketonuria (PKU). JNT-517, a small molecule inhibitor of the phenylalanine (Phe) transporter SLC6A19, is being evaluated as a potential first-in-class oral treatment for PKU across all ages and genotypes. On the basis of these positive interim results, Jnana has adapted the Phase 1b trial design to support the potential for accelerated progression of JNT-517. “There is an urgent need for an oral, safe, and efficacious therapy for the more than 60% of individuals with PKU not currently on therapy. Across the spectrum of mild to severe disease, our results demonstrate a robust, sustained reduction in blood Phe levels, the registrational endpoint for PKU, giving us high confidence in the path forward for JNT-517,” said George Vratsanos, M.D., Chief Medical Officer and Head of R&D at Jnana Therapeutics. “We are also encouraged by this validation of the power of our RAPID platform to discover small molecules with compelling clinical benefit against challenging-to-drug targets.” JNT-517 is being studied in a randomized, double-blind, placebo-controlled trial in individuals with mild to severe PKU. Following a 28-day screening period focused predominantly on ensuring an average blood Phe level of >600µM, study participants were randomized with no run-in period to 75mg of JNT-517 twice daily (BID) or placebo. The planned interim analysis was based on 13 participants, eight dosed with JNT-517 and five dosed with placebo over 28 days, and demonstrated the following results JNT-517 led to a statistically significant (p=0.0019 vs. placebo) mean blood Phe reduction from baseline of 51%, measured per-protocol at day 28. A high response rate was seen where seven of eight (88%) treated participants achieved >30% reduction in blood Phe from baseline; five of eight (63%) achieved >45% reduction; and two of eight (25%) achieved >65% reduction. A robust response was seen across participants treated with JNT-517 irrespective of baseline blood Phe levels, which ranged from 593µM to 1,526µM with a mean of 1,124µM. A rapid onset of effect was observed with significant blood Phe reduction achieved within seven days after commencing dosing, which was sustained through the full 28 days of dosing. JNT-517 was safe and well tolerated with no serious adverse events and no clinically significant changes in laboratory parameters, consistent with the safety profile demonstrated in the Phase 1a healthy volunteer study. "JNT-517 represents a completely new therapeutic approach that could transform the current treatment paradigm in PKU, in particular for individuals with severe, or classical, PKU where there is the highest unmet medical need,” said Cary O. Harding, M.D., study investigator and Professor of Molecular and Medical Genetics at Oregon Health and Science University School of Medicine. “I am encouraged by the clinical results to date and look forward to working with Jnana and the PKU community to continue to advance this program.” Based on these interim results, Jnana has adapted the protocol of the ongoing trial to include dose exploration. Jnana expects topline data from the second dose cohort in mid-2024 and plans to submit full data from the two dose cohorts for presentation at a scientific meeting in the second half of 2024. Jnana anticipates the company will engage regulators in the second half of 2024 and seek to advance JNT-517 directly into a pivotal Phase 3 study in the first half of 2025. JNT-517 Phase 1b Clinical Trial The ongoing clinical program includes a randomized, double-blind, placebo-controlled trial evaluating the safety, tolerability, pharmacokinetics, and effect on blood and urinary Phe of JNT-517 dosed over a four-week period in individuals diagnosed with PKU. The study dosed its first participant with PKU in August 2023 and is enrolling individuals aged 18 to 65 at clinical sites in the United States and Australia. For more information about the study, please see clinicaltrials.gov (NCT05781399). About JNT-517 JNT-517 is a selective small molecule inhibitor of the Phe transporter SLC6A19 that has the potential to be a first-in-class oral therapy used to treat any person with PKU, regardless of age or genotype. JNT-517 acts at a novel, cryptic allosteric site to block kidney reabsorption of Phe and offers a promising new approach to reduce blood Phe levels. The U.S. Food and Drug Administration granted JNT-517 Rare Pediatric Disease Designation in late 2022. About PKU PKU is a rare inherited metabolic disorder caused by a deficiency of the enzyme phenylalanine hydroxylase (PAH). This enzyme is required for the breakdown of phenylalanine (Phe), an amino acid found in all protein-containing foods. When PAH is deficient or defective, Phe accumulates to abnormally high levels in the blood. If left untreated, toxic levels of Phe in the blood can result in progressive and severe neurological impairment and neuropsychological complications. The SLC transporter SLC6A19 is responsible for kidney reabsorption of Phe back into the bloodstream, and the inhibition of SLC6A19 offers a novel, oral approach for the treatment of PKU by facilitating urinary excretion of excess Phe. About Jnana Therapeutics Jnana Therapeutics is a clinical-stage biotechnology company leveraging its next-generation RAPID chemoproteomics platform to discover medicines for highly validated, challenging-to-drug targets to treat diseases with high unmet needs. Jnana is focused on developing first- and best-in-class therapies to treat a wide range of diseases, including rare diseases and immune-mediated diseases. Jnana’s wholly owned lead program, JNT-517, which targets an allosteric site on the phenylalanine transporter SLC6A19, is a potential first-in-class oral approach for the treatment of PKU, a rare genetic metabolic disease. Located in Boston, Jnana brings together scientific leaders in small molecule drug discovery and development, a highly experienced management team, and the backing of leading life science investors Bain Capital Life Sciences, RA Capital Management, Polaris Partners, Versant Ventures, Avalon Ventures, Pfizer Ventures, and AbbVie Ventures.

Read More

Medical

Twist Bioscience Expands Express Genes Rapid Synthesis Service

Twist Bioscience Corporation | January 30, 2024

Twist Bioscience Corporation a company enabling customers to succeed through its offering of high-quality synthetic DNA using its silicon platform, today announced the expansion of Twist Express Genes, a new leading gene synthesis service with an order to shipping turnaround starting at five business days1, to include larger DNA preparations up to 1 milligram. The Express Genes offering, initially launched in November 2023, now extends to larger midiprep (10μg to 100 μg) and maxiprep (100μg to 1mg) DNA preparations. As with Twist standard speed Clonal Genes, all Twist Express Genes are NGS-verified as clonally perfect. “Since the initial launch of our Express Genes service in November, we have received positive and enthusiastic feedback from existing customers on our consistent and rapid turnaround time. By expanding Express Genes to include midiprep and maxiprep, we can now offer rapid gene synthesis at all gene prep scales, enabling large scale experimentation for pharmaceutical, biotechnology, academic and industrial chemical researchers,” said Emily M. Leproust, Ph.D., CEO and co-founder of Twist Bioscience. “With the expanded offering of Twist Express Genes, more researchers can gain access to Twist genes fast and at scale, including those using alternative providers and those cloning their own genes. The ability to order and receive synthetic DNA fast and at scale means more time for cutting-edge research, more make-test-learn cycles, and an accelerated journey to game-changing discoveries.” Twist leverages its ability to miniaturize the chemical reaction to create DNA using its silicon-based DNA synthesis platform along with expertise, software, optimized processes and the expanded layout of its Wilsonville facility to deliver Clonal Genes and Gene Fragments at scale and with rapid turnaround times. Twist’s Express Genes are offered with dynamic pricing, which reflects market demand and manufacturing capacity in a responsive premium price. Customers are able to quickly and easily place orders for Express Genes through Twist’s ecommerce platform. Twist Express Genes Twist Express Genes are 0.3kb to 5.0kb in length. Due to scale enabled by Twist’s platform, orders of any size both small and large can be filled, and as with standard speed Twist Clonal Genes, Twist Express Genes are NGS sequence-verified as one hundred percent accurate. Twist Express Genes can be cloned into catalog vectors or custom vectors so that customers can move right to experimentation. They can also be shipped in customers’ preferred delivery formats, including tubes and plates. For more information and product specifications click here. Current turnaround times for some Twist Bioscience products Express Genes1 (50ng-10µg): starting at 5 business days, now for up to 10µg Standard Clonal Genes (50ng-10µg): starting at 10 business days Express Genes1 (10µg-1mg): starting at 8 business days Standard Clonal Genes (10µg-1mg): starting at 13 business days 1 Express Clonal Genes ship in 5-7 business days. DNA prep sizes including 10 μg - 100 μg, and 100 μg - 1 mg may incur an additional 3-5 days for synthesis. Orders placed outside of the US will incur additional delivery turnaround time. Express Genes orders that require new custom vector onboarding will incur an additional 1-2 weeks for processing. About Twist Bioscience Corporation Twist Bioscience is a leading and rapidly growing synthetic biology and genomics company that has developed a disruptive DNA synthesis platform to industrialize the engineering of biology. The core of the platform is a proprietary technology that pioneers a new method of manufacturing synthetic DNA by “writing” DNA on a silicon chip. Twist is leveraging its unique technology to manufacture a broad range of synthetic DNA-based products, including synthetic genes, tools for next-generation sequencing (NGS) preparation, and antibody libraries for drug discovery and development. Twist is also pursuing longer-term opportunities in digital data storage in DNA and biologics drug discovery. Twist makes products for use across many industries including healthcare, industrial chemicals, agriculture and academic research.

Read More

Events