Brain study probes molecular origins of anxiety

Scientists have found that increasing the levels of a molecule in a particular part of the brain can reduce anxious temperament in young monkeys. The finding sheds light on the origins of anxiety disorders and how it might be possible to devise early treatments for those at risk.

Spotlight

Bioverativ

Bioverativ is a global biotechnology company dedicated to transforming the lives of people with hemophilia and other rare blood disorders. We have a leading portfolio of hemophilia therapies and an innovative pipeline of programs in hemophilia, sickle cell disease and beta thalassemia.

OTHER ARTICLES
MedTech

Next-Gen Genetics Cancer Therapies Creating Investment Prospects

Article | July 11, 2022

Genetic therapeutics such as genetic engineering and gene therapy are increasingly emerging as one of the most influential and transformed biotechnological solutions around the globe in recent times. These genetic solutions are being assessed across various medical domains, including cancer treatment, neurology, oncology, and ophthalmology. Citing the trend, the genetics industry is estimated to experience a tsunami of approvals, with over 1,000 cell and gene therapy clinical trials currently underway and over 900 companies worldwide focusing on these cutting-edge therapies. Growing Cancer Encourages Advancements in Genetic Technologies With the surging cases of cancers such as leukemias, carcinomas, lymphomas, and others, patients worldwide are increasing their spending on adopting novel therapeutic solutions for non-recurring treatment of the disease, such as gene therapy, genetic engineering, T-cell therapy, and gene editing. As per a study by the Fight Cancer Organization, spending on the treatment of cancer increased to $200.7 billion, and the amount is anticipated to exceed $245 billion by the end of 2030. Growing revenue prospects are encouraging biotechnology and biopharmaceutical companies to develop novel genetic solutions for cancer treatment. For instance, Bristol-Myers Squibb K.K., a Japanese pharmaceutical company, introduced a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T cell immunotherapy, Abecma, for the treatment of relapsed or refractory (R/R) multiple myeloma in 2022. Amid a New Market: Genetics Will Attract Massive Investments Despite several developments and technological advancements, genetics is still considered to be in a nascent stage, providing significant prospects for growth to the companies that are already operating in the domain. Genetics solutions such as gene therapies, gene editing, and T-cell immunotherapy are emerging as highly active treatments across various medical fields, resulting in increasing research and development activities across the domain, drawing significant attention from investors. Given the potential of genetic treatments and the focus on finding new ways to treat cancer and other related diseases, it's easy to understand why companies are investing in the domain. For instance, Pfizer has recently announced an investment of around $800 million to construct development facilities supporting gene therapy manufacturing from initial preclinical research through final commercial-scale production. Due to these advancements, cell and gene therapies are forecast to grow from $4 billion annually to more than $45 billion, exhibiting growth at a 63% CAGR. The Future of Genetics Though there is a significant rise in advancement in genetic technologies and developments, the number of approved genetic treatments remains extremely small. However, with gene transfer and CRISPR solutions emerging as new modalities for cancer treatment, the start-up companies will attract a growing amount and proportion of private and public investments. This is expected present a tremendous opportunity for biopharma and biotechnology investors to help fund and benefit from the medical industry's shift from traditional treatments to cutting-edge genetic therapeutics in the coming years.

Read More
MedTech

5 Biotech Stocks Winning the Coronavirus Race

Article | July 20, 2022

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More
MedTech

Next-Gen Gene Therapy to Counter Complex Diseases

Article | July 12, 2022

Gene therapy has historically been used to treat disorders with in-depth knowledge caused by a single genetic mutation. Thanks to the introduction of new generation technologies, the potential of gene therapy is expanding tAo treat diseases that were previously untreatable. Evolution of Gene Therapy One of the major success stories of the twenty-first century has been gene therapy. However, it has not been the same in the past. The field's journey to this point has been long and mostly difficult, with both tragedy and triumph along the way. Initially, genetic disorders were thought to be untreatable and permanently carved into the genomes of individuals unfortunate enough to be born with them. But due to the constant technological advancement and research activities, gene therapy now has the potential to treat various genetic mutation-causing diseases with its ability to insert a new copy and replace faulty genes. Gene Therapy is Finding New Roads in the Medical Sector Gene therapy can help researchers treat a variety of conditions that fall under the general heading of epilepsy, instead of only focusing on a particular kind of disorder brought on by a genetic mutation. Following are some of the domains transformed by gene therapy. Neurology – Gene therapy can be used for the treatment of seizures by directly injecting it into the area causing an uncontrolled electrical disturbance in the brain. Furthermore, by using DNA sequences known as promoters, gene therapy can be restricted to specific neurons within that area. Ophthalmology – Genetic conditions such as blindness can be caused due to the mutation of any gene out of over 200 and resulting in progressive vision loss in children. With advanced gene therapies such as optogenetics, lost photoreceptor function can be transferred to the retinal cells, which are responsible for relaying visual information to the brain. This might give patients the ability to navigate in an unknown environment with a certain level of autonomy. The Future of Gene Therapy The news surrounding gene therapy has been largely favorable over the past few years, with treatment after treatment obtaining regulatory approvals, successful clinical trials, and garnering significant funds to begin development. With more than 1,000 clinical trials presently underway, the long-awaited gene therapy revolution might finally be here.

Read More
MedTech

Data Analytics: A Groundbreaking Technology in Biotech

Article | July 20, 2022

Biotechnology is a vast discipline of biology that employs diverse biological systems to create solutions that can significantly alter the ways in which they operate across various domains. That said, biotechnology is not a new notion. It has existed for millennia, with ancient civilizations using its earliest incarnations to cultivate crops and create alcoholic beverages. Today, the biotechnology industry has developed by leaps and bounds and has amassed a vast quantity of scientific data through study and research. Given the importance of data in the biotechnology business, it is not difficult to understand why biotech companies utilize data analytics. Modern data analytics tools have made it possible for researchers in the biotech industry to build predictive analytics models and gain knowledge about the most efficient approaches to accomplish their desired goals and objectives. Data analytics is increasingly being adopted by biotech businesses to better understand their industry and foresee any problems down the road. How is Data Analytics Revolutionizing Fields in Biotechnology? Today's business and scientific fields greatly benefit from data. Without the analysis of vast information libraries that provide new insights and enable new innovations, no industry can really advance. Being highly reliant on big data analytics, biotech is not an exception in this regard. With the tools and methods that help scientists systematize their findings and speed up their research for better and safer results, data analytics is making deeper inroads into the biotechnology industry. It is emerging as a crucial link between knowledge and information and is extensively being used for purposes other than just examining the information that is already available. The following are a few of the cutting-edge biotechnology applications of data analytics Genomics and Disease Treatment Pharmaceutical Drug Discovery Drug Recycling and Safety Agriculture and Agri-products Environmental Damage Mitigation Data Analytics Possibilities in Biotechnology With data analytics becoming an integral part of how biotech businesses operate, biotechnologists and related stakeholders need to understand its emergence and crucial role. Data analytics has opened new frontiers in the realm of biotechnology. Thanks to developments in data analytics, research and development activities that once took years may now be accomplished in a matter of months. Also, now scientists have access to biological, social, and environmental insights that can be exploited to create more effective and sustainable products. By understanding the importance of data-related tools and techniques applications, biotech companies are aiming to invest in the popularizing technology to stay updated in the fast-paced biotechnology industry.

Read More

Spotlight

Bioverativ

Bioverativ is a global biotechnology company dedicated to transforming the lives of people with hemophilia and other rare blood disorders. We have a leading portfolio of hemophilia therapies and an innovative pipeline of programs in hemophilia, sickle cell disease and beta thalassemia.

Related News

Newly-discovered protein could play key role in fighting obesity

Drug Target Review | November 21, 2019

Scientists at Scripps Research, US have opened the door to critical new understandings about obesity and metabolism with an unexpected finding about a protein that is highly expressed in fat tissue. This discovery, the scientists say, could lead to new approaches for addressing obesity and potentially many other diseases. The signalling protein known as progesterone receptor membrane component 2 (PGRMC2) had previously been detected in the uterus, liver and several areas of the body. But the lab of Enrique Saez, PhD, saw that it was most abundant in fat tissue, particularly in brown fat, which turns food into heat to maintain body temperature. The team built on their discovery, finding that PGRMC2 binds to and releases an essential molecule called heme, which travels within cells to enable crucial life processes such as cellular respiration, cell proliferation, cell death and circadian rhythms. Saez and his team found that PGRMC2 is a ‘chaperone’ of heme, encapsulating the molecule and transporting it from the cell’s mitochondria, where heme is created, to the nucleus, where it helps carry out important functions. Without a protective chaperone, heme would react with and destroy everything in its path.

Read More

AI Algorithm To Speed Up Drug Molecule Design

Technology Networks | November 20, 2019

Artificial Intelligence can be used to predict molecular wave functions and the electronic properties of molecules. This innovative AI method developed by a team of researchers at the University of Warwick, the Technical University of Berlin and the University of Luxembourg, could be used to speed-up the design of drug molecules or new materials. Artificial Intelligence and machine learning algorithms are routinely used to predict our purchasing behaviour and to recognise our faces or handwriting. In scientific research, Artificial Intelligence is establishing itself as a crucial tool for scientific discovery. In Chemistry AI has become instrumental in predicting the outcomes of experiments or simulations of quantum systems. To achieve this, AI needs to be able to systematically incorporate the fundamental laws of physics. An interdisciplinary team of chemists, physicists, and computer scientists led by the University of Warwick, and including the Technical University of Berlin, and the University of Luxembourg have developed a deep machine learning algorithm that can predict the quantum states of molecules, so-called wave functions, which determine all properties of molecules.

Read More

Regeneration mechanism could provide target for liver disease drugs

Drug Target Review | November 06, 2019

A newly-discovered molecular mechanism that allows damaged adult liver cells to regenerate could pave the way for drugs for chronic liver diseases. A molecular mechanism that allows damaged adult liver cells to regenerate has been discovered and could pave the way for drugs to treat conditions such as cirrhosis or other chronic liver diseases where regeneration is impaired. The researchers used mice and liver organoids (‘mini-livers’ generated in the lab from mouse liver cells) to study adult liver regeneration. They discovered that a molecule called TET1 is produced in healthy adult liver cells during the first steps of regeneration, and that this process is mimicked in liver organoids, where it has a role in stimulating organoid growth. “We now understand how adult liver cells respond to the changes caused by tissue injury,” said Dr Luigi Aloia, first author of the paper and postdoctoral researcher at the Gurdon Institute “This paves the way for exciting future work to boost cell regeneration in chronic liver disease, or in other organs where regeneration is minimal such as the brain or pancreas.”

Read More

Newly-discovered protein could play key role in fighting obesity

Drug Target Review | November 21, 2019

Scientists at Scripps Research, US have opened the door to critical new understandings about obesity and metabolism with an unexpected finding about a protein that is highly expressed in fat tissue. This discovery, the scientists say, could lead to new approaches for addressing obesity and potentially many other diseases. The signalling protein known as progesterone receptor membrane component 2 (PGRMC2) had previously been detected in the uterus, liver and several areas of the body. But the lab of Enrique Saez, PhD, saw that it was most abundant in fat tissue, particularly in brown fat, which turns food into heat to maintain body temperature. The team built on their discovery, finding that PGRMC2 binds to and releases an essential molecule called heme, which travels within cells to enable crucial life processes such as cellular respiration, cell proliferation, cell death and circadian rhythms. Saez and his team found that PGRMC2 is a ‘chaperone’ of heme, encapsulating the molecule and transporting it from the cell’s mitochondria, where heme is created, to the nucleus, where it helps carry out important functions. Without a protective chaperone, heme would react with and destroy everything in its path.

Read More

AI Algorithm To Speed Up Drug Molecule Design

Technology Networks | November 20, 2019

Artificial Intelligence can be used to predict molecular wave functions and the electronic properties of molecules. This innovative AI method developed by a team of researchers at the University of Warwick, the Technical University of Berlin and the University of Luxembourg, could be used to speed-up the design of drug molecules or new materials. Artificial Intelligence and machine learning algorithms are routinely used to predict our purchasing behaviour and to recognise our faces or handwriting. In scientific research, Artificial Intelligence is establishing itself as a crucial tool for scientific discovery. In Chemistry AI has become instrumental in predicting the outcomes of experiments or simulations of quantum systems. To achieve this, AI needs to be able to systematically incorporate the fundamental laws of physics. An interdisciplinary team of chemists, physicists, and computer scientists led by the University of Warwick, and including the Technical University of Berlin, and the University of Luxembourg have developed a deep machine learning algorithm that can predict the quantum states of molecules, so-called wave functions, which determine all properties of molecules.

Read More

Regeneration mechanism could provide target for liver disease drugs

Drug Target Review | November 06, 2019

A newly-discovered molecular mechanism that allows damaged adult liver cells to regenerate could pave the way for drugs for chronic liver diseases. A molecular mechanism that allows damaged adult liver cells to regenerate has been discovered and could pave the way for drugs to treat conditions such as cirrhosis or other chronic liver diseases where regeneration is impaired. The researchers used mice and liver organoids (‘mini-livers’ generated in the lab from mouse liver cells) to study adult liver regeneration. They discovered that a molecule called TET1 is produced in healthy adult liver cells during the first steps of regeneration, and that this process is mimicked in liver organoids, where it has a role in stimulating organoid growth. “We now understand how adult liver cells respond to the changes caused by tissue injury,” said Dr Luigi Aloia, first author of the paper and postdoctoral researcher at the Gurdon Institute “This paves the way for exciting future work to boost cell regeneration in chronic liver disease, or in other organs where regeneration is minimal such as the brain or pancreas.”

Read More

Events