Biotechnology Department

| April 17, 2015

article image
This video  about the biotechnology department

Spotlight

Irvine Scientific

Irvine Scientific, a member of JX Holdings Group, is a worldwide leader in the innovation and manufacture of cell culture media, reagents, and medical devices for researchers and clinicians. The company provides unrivalled service and quality to scientists working in cell therapy and regenerative medicine, assisted reproductive technology and cytogenetics, and industrial cell culture for the large-scale production of biotherapeutics and vaccines. Irvine Scientific adheres to both ISO and FDA regulations and operates dual cGMP manufacturing facilities in California, USA and Tokyo, Japan.

OTHER ARTICLES

5 Biotech Stocks Winning the Coronavirus Race

Article | April 13, 2020

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More

Cell Out? Lysate-Based Expression an Option for Personalized Meds

Article | April 13, 2020

Cell-free expression (CFE) is the practice of making a protein without using a living cell. In contrast with cell line-based methods, production is achieved using a fluid containing biological components extracted from a cell, i.e., a lysate. CFE offers potential advantages for biopharma according to Philip Probert, PhD, a senior scientist at the Centre for Process Innovation in the U.K.

Read More
DIAGNOSTICS

Making Predictions by Digitizing Bioprocessing

Article | April 13, 2020

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More

Learning How FoxA2 Helps Turn Stem Cells into Organs

Article | April 13, 2020

Scientists at the Perelman School of Medicine at the University of Pennsylvania discovered early on in each cell, FoxA2 simultaneously binds to both the chromosomal proteins and the DNA, opening the flood gates for gene activation. The discovery, “Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones,” published in Nature Genetics, helps untangle mysteries of how embryonic stem cells develop into organs, according to the researchers. “Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon,” write the investigators.

Read More

Spotlight

Irvine Scientific

Irvine Scientific, a member of JX Holdings Group, is a worldwide leader in the innovation and manufacture of cell culture media, reagents, and medical devices for researchers and clinicians. The company provides unrivalled service and quality to scientists working in cell therapy and regenerative medicine, assisted reproductive technology and cytogenetics, and industrial cell culture for the large-scale production of biotherapeutics and vaccines. Irvine Scientific adheres to both ISO and FDA regulations and operates dual cGMP manufacturing facilities in California, USA and Tokyo, Japan.

Events