Biotech Investing

| October 9, 2017

article image
Discovering, testing, and approving a new drug can take many years. The catalysts that occur around regulatory events are important for share price movement.

Spotlight

Statens Serum Institut

Statens Serum Institut (SSI) is a member of the Ministry of Health and Senior Affairs. Our main task is to ensure preparedness for infectious diseases, congenital disorders and biological threats. We monitor a large number of infectious diseases in Denmark and keep an eye on developments around the world via our international collaborations. Against this background, we advise healthcare professionals on prevention and treatment and advise decision-makers in situations that require special measures, for example in case of epidemics.

OTHER ARTICLES

Pfizer, BioNTech Plan Clinical Trial for COVID-19 mRNA Vaccine Candidate

Article | April 9, 2020

Pfizer and BioNTech plan to begin human clinical trials on their lead COVID-19 therapeutic candidate, an mRNA vaccine, by the end of this month, the companies said today, through a collaboration that could generate up to $748 million for the German biotech. The companies announced plans last month to partner on BNT162, the first treatment to emerge from BioNTech’s accelerated COVID-19-focused development program, “Project Lightspeed.” BioNTech and Pfizer established collaboration intended to draw upon BioNTech’s proprietary mRNA vaccine platforms, and Pfizer’s expertise in vaccine research and development, regulatory capabilities, and global manufacturing and distribution network.

Read More

Better Purification and Recovery in Bioprocessing

Article | August 2, 2021

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More

Biotech: Finding The DNA For Success

Article | April 3, 2020

The integration of artificial intelligence within life sciences is making drug discovery and development more innovative, less labor intensive and more cost-effective, says Deloitte’s annual global outlook. According to Deloitte’s 2020 Global Life Sciences Outlook, the biotech sector is at an inflection point. To prepare for the future and remain relevant in the ever-evolving business landscape, biopharma and medtech organizations will be looking for new ways to create value and new metrics to make sense of today’s wealth of data, the report overview says. As data-driven technologies provide biopharma and medtech organizations with treasure troves of information, and automation takes over some mundane tasks, new talent models are emerging based on purpose and meaning. The integration of artificial intelligence (AI) and machine learning approaches within life sciences is making drug discovery and development more innovative, time-effective and cost-effective, the Deloitte report states.

Read More

Learning How FoxA2 Helps Turn Stem Cells into Organs

Article | March 18, 2020

Scientists at the Perelman School of Medicine at the University of Pennsylvania discovered early on in each cell, FoxA2 simultaneously binds to both the chromosomal proteins and the DNA, opening the flood gates for gene activation. The discovery, “Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones,” published in Nature Genetics, helps untangle mysteries of how embryonic stem cells develop into organs, according to the researchers. “Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon,” write the investigators.

Read More

Spotlight

Statens Serum Institut

Statens Serum Institut (SSI) is a member of the Ministry of Health and Senior Affairs. Our main task is to ensure preparedness for infectious diseases, congenital disorders and biological threats. We monitor a large number of infectious diseases in Denmark and keep an eye on developments around the world via our international collaborations. Against this background, we advise healthcare professionals on prevention and treatment and advise decision-makers in situations that require special measures, for example in case of epidemics.

Events