Bio Databases 2019: Immunology

I always look forward to the Nucleic Acids Research (NAR) database issue. It's a great way to learn what people are interested in and learn something new. Its also fun to count the number of databases, because each way they're counted, a different answer is obtained. As in 2016, in 2018 the number of databases listed by NAR decreased. This is in part due to the overall trend that the number of new databases being submitted to the archive each year since 2004, has been slowly decreasing. It is also due to an increase in the number of databases being removed from the archive. Both issues are discussed at the end of this blog.

Spotlight

Bode Cellmark Forensics

We are pleased to introduce Bode Cellmark Forensics, a new brand that combines the market-leading brands, solutions and teams of Bode Technology and Cellmark Forensics.

OTHER ARTICLES
MedTech

Better Purification and Recovery in Bioprocessing

Article | July 16, 2022

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More
MedTech

Advancement in Genomics Accelerating its Penetration into Precision Health

Article | October 7, 2022

Genomics is an interdisciplinary field of biology emphasizing the structure, editing, evolution, function, and mapping of genomes. It is creating deeper inroads across the precision health domain with the increasing introduction of advanced technologies such as quantum simulation, next-generation sequencing (NGS), and precise genome manipulation. As precision health focuses on providing the proper intervention to the right patient at the right time, genomics increasingly finds applications in human and pathogen genome sequencing in clinical and research spaces. Rising Hereditary Diseases Burden Paving the Way for Genomics in Precision Health In the last few years, a significant surge in the prevalence of diseases and ailments such as diabetes, obesity, baldness, and others has been witnessed across the globe. A history of family members with chronic diseases, such as cancer, diabetes, high blood pressure, hearing issues, and heart disease, can sometimes continue into the next generation. Hence, the study of genes is extensively being conducted for predicting health risks and early treatment of these diseases. It also finds use in CRISPR-based diagnostics and the preparation of precision medication for the individual. In addition, ongoing advancements in genomics are making it possible to identify different genetic traits that persuade people to more widespread diseases and health problems. The Emergence of Genomics Improves Disease Understanding Genomics refers to the study of the complete genetic makeup of a cell or organism. Increasing scientific research in the area substantially contributes to increasing knowledge about the human genome and assists in improving the ability to understand disease etiology, risk, diagnosis, treatment, and prevention. On account of these improvements, innovative genomic technologies and tools are being developed to enable better precision health not only for the individual but for various regional populations as well. The Way Forward With growing preference for personalized medicine and an increasing need for more accurate pathogen detection and diagnostics, genomics is gaining huge popularity across the precision health domain. Also, increasing research activities for developing novel high-precision therapeutics and rising importance of gene study in the prevention, diagnosis, and management of infectious and genetic diseases will further pave the way for genomics in the forthcoming years.

Read More
MedTech

Laboratory Information Management System for Biotech Labs: Significance & Benefits

Article | July 12, 2022

If you have ever visited the testing laboratory of a large biotechnology company, you will be aware that managing the laboratory's operations single-handedly is no easy task. The greater the size of a lab, the more research and testing activities it must accommodate. A variety of diagnostic tests are prescribed for patients in order to detect various diseases. For example, it may include blood glucose testing for diabetics, lipid panel, or liver panel tests for evaluating cardiac risk and liver function, cultures for diagnosing infections, thyroid function tests, and others. Laboratory management solutions such as laboratory information management systems (LIMS) and other software play a significant role in managing various operational data at biotech laboratories. It is one of the important types of software developed to address thedata management and regulatory challenges of laboratories. The software enhances the operational efficiency of biotech labs by streamlining workflows, proper record-keeping, and eradicating the need for manually maintaining data. What Are the Benefits of Laboratory Information Management Software in Biotechnology? As the trends of digitization and technology continue to create deeper inroads into the biotechnology sector, a significant rise in the adoption of innovative medical software solutions, such as LIMS, is being witnessed for managing research data, testing reports, and post-research results globally. Here are a few reasons that are encouraging biotech facilities to adopt LIMS solutions Real-Time Data Collection and Tracking Previously, collecting and transporting samples was a tedious and time-consuming task. However, the adoption of LIMS with innovative tracking modules has made the job easier. The real-time sample tracking feature of LIMS has made it possible for personnel to collect the research data in real-time and manage and control the workflow with a few mouse clicks on the screen. Increase Revenue LIMS makes it possible to test workflows while giving users complete control over the testing process. A laboratory is able to collect data, schedule equipment maintenance or upgrades, enhance operational efficiency, and maintain a lower overhead with the help of the LIMS, thereby increasing revenue. Streamlined Workflow With its completion monitoring, LIMS speeds up laboratory workflows and keeps track of information. It assigns tasks to the specialist along with keeping a real-time track of the status and completion of each task. LIMS is integrated into the laboratory using lab information, which ultimately speeds up internal processes and streamlines the workflow. Automatic Data Exchange LIMS solutions store data in a centralized database. Automated transfer of data between departments and organizations is one of the major features of LIMS. Through its automated information exchange feature, LIMS improves internal operations, decreases the reporting time for data sharing, and assists in faster decision-making. Final Thoughts As the healthcare sector continues to ride the wave of digital transformation, biotech laboratories are emphasizing adopting newer technologies to keep up with the changes. Citing this trend, laboratory information management systems are becoming crucial for biotech and medical organizations for maintaining research data, instant reporting, and managing confidential, inventory, and financial data with centralized data storage.

Read More

5 Biotech Stocks Winning the Coronavirus Race

Article | April 13, 2020

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More

Spotlight

Bode Cellmark Forensics

We are pleased to introduce Bode Cellmark Forensics, a new brand that combines the market-leading brands, solutions and teams of Bode Technology and Cellmark Forensics.

Related News

Transcriptomic Switch Turns Healthy Liver Tissue Cancerous

Technology Networks | December 17, 2019

By combining RNA sequencing, bioinformatics and mathematical modeling, University of California San Diego School of Medicine and Moores Cancer Center researchers identified a sudden transcriptomic switch that turns healthy liver tissue cancerous. The finding was used to develop a quantitative analytical tool that assesses cancer risk in patients with chronic liver disease and to predict tumor stages and prognosis for patients with liver cancer. In the December 16, 2019 online edition of the Proceedings of the National Academy of Science (PNAS), Gen-Sheng Feng, PhD, professor of in the Department of Pathology and Section of Molecular Biology, Division of Biological Sciences at UC San Diego, and team describe developing a tumorigenic index score that identifies a shift from healthy to malignant cells

Read More

Transcriptomic Switch Turns Healthy Liver Tissue Cancerous

Technology Networks | December 17, 2019

By combining RNA sequencing, bioinformatics and mathematical modeling, University of California San Diego School of Medicine and Moores Cancer Center researchers identified a sudden transcriptomic switch that turns healthy liver tissue cancerous. The finding was used to develop a quantitative analytical tool that assesses cancer risk in patients with chronic liver disease and to predict tumor stages and prognosis for patients with liver cancer. In the December 16, 2019 online edition of the Proceedings of the National Academy of Science (PNAS), Gen-Sheng Feng, PhD, professor of in the Department of Pathology and Section of Molecular Biology, Division of Biological Sciences at UC San Diego, and team describe developing a tumorigenic index score that identifies a shift from healthy to malignant cells

Read More

Events