Beyond Pesticides National Forum Reflects Movement Behind Strong Organic Standards that Have Integrity

Organic Strategies for Community Environmental Health: Eliminating pesticides where we live, work, learn, and play,co-convened with the Children’s Environmental Health Center of the Icahn School of Medicine at Mount Sinai, brought together scientists, land and park managers, urban farmers, policy makers, and advocates to chart a course that takes on the big public health and environmental issues associated with chemical-intensive practices. The conference began with a tour of the organically managed Battery Park Conservancy (in lower Manhattan) and the urban farm at Wagner Houses (East Harlem) of the New York City Housing Authority and coordinated by Green City Force. The Forum brought together speakers who addressed the problems associated with pesticides use, cutting edge science, and solutions embodied in organic practices. The speaker line-up brought together leaders in their fields. Joan Dye Gussow, EdD, a leader of the organic and local food movement, kicked off the conference with a talk grounded in a history of pesticide contamination and poisoning issues that helped to launch mainstream organic agriculture, now subject to attacks that are undermining public trust in the standards and the organic label. 

Spotlight

Editas Medicine

Editas Medicine's mission is to translate its genome editing technology into a novel class of human therapeutics that enable precise and corrective molecular modification to treat the underlying cause of a broad range of diseases at the genetic level.

OTHER ARTICLES
MedTech

Biotech in 2022

Article | July 13, 2022

The robust global channel of more than, 800 gene and cell curatives presently in trials will produce clinical readouts in 2022, revealing what lies ahead for advanced curatives. The impact will be felt in 2022, no matter how you slice it. Eventually, how well industry and non-supervisory bodies unite to produce new frameworks for advanced therapies will shape the year 2022 and further. Pacific Northwest talent will continue to contribute to the advancement of gene and cell curatives in both the short and long term, thanks to its deep pool of ground-breaking scientific developers, entrepreneurial directorial leadership, largely skilled translational scientists, and endured bio manufacturing technicians. We may see continued on-life science fund withdrawal from biotech in 2021, but this can be anticipated as a strong comeback in 2022 by biotech industry, backed by deep-pocketed life science investors who are committed to this sector. A similar investment, combined with pharma's cash-heavy coffers, can result in increased junction and acquisition activity, which will be a challenge for some but an occasion for others. Over the last five years, investment interest in Seattle and the Pacific Northwest has grown exponentially, from Vancouver, British Columbia, to Oregon. The region's explosive portfolio of new biotech companies, innovated out of academic centres, demonstrates the region's growing recognition of scientific invention. This created a belief that continued, especially because Seattle's start-ups and biotech enterprises are delivering on their pledge of clinical and patient impact. Talent and staffing will continue to be difficult to find. It's a CEO's market, but many of these funds' return, and are not rising in proportion to the exorbitant prices they're paying to enter deals. This schism has become particularly pronounced in 2021. Hence, everyone in biotech is concerned about reclamation and retention.

Read More
MedTech

Nanostructures: Emerging as Effective Carriers for Drug Delivery

Article | July 16, 2022

Natural remedies have been employed in medicine since antiquity. However, a large number of them fail to go past the clinical trial stages. In vivo instability, poor solubility and bioavailability, a lack of target-specific delivery, poor absorption, and side effects of the medication are only a few of the problems caused by the use of large-sized materials in drug administration. Therefore, adopting novel drug delivery systems with targeted medications may be a solution to address these pressing problems. Nanotechnology has received tremendous attention in recent years and has been demonstrated to help blur the boundaries between the biological and physical sciences. With great success, it plays a vital part in enhanced medication formulations, targeted venues, and controlled drug release and delivery. Limitations of Traditional Delivery Trigger the Adoption of Nanoparticles The field of nanotechnology and the creation of drug formulations based on nanoparticles is one that is expanding and showcasing great potential. It has been thoroughly researched in an effort to develop new methods of diagnosis and treatment and to overcome the limitations of several diseases' current therapies. As a result, nanoparticles are being used to improve the therapeutic effectiveness and boost patient adherence to treatment by increasing medication bioavailability, drug accumulation at a particular spot, and reducing drug adverse effects. The nanoparticles could be transformed into intelligent systems housing therapeutic and imaging agents by manipulating their surface properties, size, correct drug load, and release with targeted drug delivery. Nanostructures facilitate the release of combination medications at the prescribed dose since they remain in the blood circulation system for a long time. Therefore, they result in fewer plasma fluctuations with decreased side effects. Due to their nanoscale, these structures can easily enter the tissue system, promote the absorption of drugs by cells, make medication administration more effective, and ensure that the medicine acts at the targeted location. The Way Ahead Nanomedicine and nano-delivery systems are a comparatively new but fast-evolving science in which nanoscale materials are used as diagnostic tools to deliver drug molecules at precisely targeted sites in a controlled manner. It is finding applications for the treatment of diseases such as cardiovascular, neurodegenerative, cancer, ocular, AIDS, and diabetes, among others. With more research and technological advancement, these drug delivery solutions will open up huge opportunities for companies that work with them.

Read More
MedTech

Data Analytics: A Groundbreaking Technology in Biotech

Article | July 20, 2022

Biotechnology is a vast discipline of biology that employs diverse biological systems to create solutions that can significantly alter the ways in which they operate across various domains. That said, biotechnology is not a new notion. It has existed for millennia, with ancient civilizations using its earliest incarnations to cultivate crops and create alcoholic beverages. Today, the biotechnology industry has developed by leaps and bounds and has amassed a vast quantity of scientific data through study and research. Given the importance of data in the biotechnology business, it is not difficult to understand why biotech companies utilize data analytics. Modern data analytics tools have made it possible for researchers in the biotech industry to build predictive analytics models and gain knowledge about the most efficient approaches to accomplish their desired goals and objectives. Data analytics is increasingly being adopted by biotech businesses to better understand their industry and foresee any problems down the road. How is Data Analytics Revolutionizing Fields in Biotechnology? Today's business and scientific fields greatly benefit from data. Without the analysis of vast information libraries that provide new insights and enable new innovations, no industry can really advance. Being highly reliant on big data analytics, biotech is not an exception in this regard. With the tools and methods that help scientists systematize their findings and speed up their research for better and safer results, data analytics is making deeper inroads into the biotechnology industry. It is emerging as a crucial link between knowledge and information and is extensively being used for purposes other than just examining the information that is already available. The following are a few of the cutting-edge biotechnology applications of data analytics Genomics and Disease Treatment Pharmaceutical Drug Discovery Drug Recycling and Safety Agriculture and Agri-products Environmental Damage Mitigation Data Analytics Possibilities in Biotechnology With data analytics becoming an integral part of how biotech businesses operate, biotechnologists and related stakeholders need to understand its emergence and crucial role. Data analytics has opened new frontiers in the realm of biotechnology. Thanks to developments in data analytics, research and development activities that once took years may now be accomplished in a matter of months. Also, now scientists have access to biological, social, and environmental insights that can be exploited to create more effective and sustainable products. By understanding the importance of data-related tools and techniques applications, biotech companies are aiming to invest in the popularizing technology to stay updated in the fast-paced biotechnology industry.

Read More
Medical

Advancement in Genomics Accelerating its Penetration into Precision Health

Article | June 22, 2022

Genomics is an interdisciplinary field of biology emphasizing the structure, editing, evolution, function, and mapping of genomes. It is creating deeper inroads across the precision health domain with the increasing introduction of advanced technologies such as quantum simulation, next-generation sequencing (NGS), and precise genome manipulation. As precision health focuses on providing the proper intervention to the right patient at the right time, genomics increasingly finds applications in human and pathogen genome sequencing in clinical and research spaces. Rising Hereditary Diseases Burden Paving the Way for Genomics in Precision Health In the last few years, a significant surge in the prevalence of diseases and ailments such as diabetes, obesity, baldness, and others has been witnessed across the globe. A history of family members with chronic diseases, such as cancer, diabetes, high blood pressure, hearing issues, and heart disease, can sometimes continue into the next generation. Hence, the study of genes is extensively being conducted for predicting health risks and early treatment of these diseases. It also finds use in CRISPR-based diagnostics and the preparation of precision medication for the individual. In addition, ongoing advancements in genomics are making it possible to identify different genetic traits that persuade people to more widespread diseases and health problems. The Emergence of Genomics Improves Disease Understanding Genomics refers to the study of the complete genetic makeup of a cell or organism. Increasing scientific research in the area substantially contributes to increasing knowledge about the human genome and assists in improving the ability to understand disease etiology, risk, diagnosis, treatment, and prevention. On account of these improvements, innovative genomic technologies and tools are being developed to enable better precision health not only for the individual but for various regional populations as well. The Way Forward With growing preference for personalized medicine and an increasing need for more accurate pathogen detection and diagnostics, genomics is gaining huge popularity across the precision health domain. Also, increasing research activities for developing novel high-precision therapeutics and rising importance of gene study in the prevention, diagnosis, and management of infectious and genetic diseases will further pave the way for genomics in the forthcoming years.

Read More

Spotlight

Editas Medicine

Editas Medicine's mission is to translate its genome editing technology into a novel class of human therapeutics that enable precise and corrective molecular modification to treat the underlying cause of a broad range of diseases at the genetic level.

Related News

Oxitec Signs New Multi-year Development Agreement to Apply 2nd Generation Technology to Control Soybean Looper

Prnewswire | April 16, 2019

a UK-based biotechnology company that pioneered the use of biologically-engineered insects to control disease-spreading mosquitoes and crop-destroying agricultural pests and a wholly-owned subsidiary of Intrexon (NASDAQ: XON), has announced the signing of a new multi-year development agreement with a collaborator to develop a self-limiting soybean looper (Chrysodeixis includens) to suppress this damaging agricultural pest that is found throughout the Americas. Soybean looper threatens a variety of crops, primarily soybeans as well as cotton, sweet potatoes, peanuts, lettuce, herbs, tomato, tobacco, and others. It has been historically difficult to control due to growing insecticide resistance. Additionally, individual adult females can lay up to 700 eggs each in their lifetime, allowing a small number of insects to exponentially grow in a very short time span. Oxitec's self-limiting soybean looper will leverage the advantages and benefits of Oxitec's 2nd generation technology as part of their commitment to advancing a new global standard for targeted, safe pest management using self-limiting insects. "Soybean looper threatens crops in the Americas, especially in Brazil and the US, where current control tools are under pressure. It is necessary to rapidly deploy new, safe and targeted technologies," said Grey Frandsen, Chief Executive Officer at Oxitec. "Our targeted biologically-based approach offers the opportunity to suppress this major agricultural pest, prevent widespread crop losses and, perhaps most importantly, complement the newest generations of other valuable pest control methods." As the need for agricultural productivity increases, so does the need for novel pest management solutions. Oxitec's approach has the potential to counter against insects developing resistance to both new and existing methods of insect control.

Read More

Scientists develop artificial chemical receptor to assist viral transduction for T cell engineering

Phys.org | April 15, 2019

Engineered T cell immunotherapy, such as chimeric antigen receptor T cell (CAR-T) and T cell receptor T cell (TCR-T) therapy, has emerged as a potent therapeutic strategy for treating tumors. However, the genetic manipulation of primary T cells remains inefficient, especially during the clinical manufacturing process. There's an urgent need to develop a reliable method for the preparation of engineered T cells. A research team led by Prof. Cai Lintao at the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences and other collaborators developed a "safe, efficient and universal" technique based on bioorthogonal chemistry and glycol-metabolic labeling for viral-mediated engineered T cell manufacturing. Their findings were published in Advanced Functional Materials. In this strategy, the functional azide motifs were anchored on T cell surfaces via the intrinsic glycometabolism of exogenous azide-glucose, thus serving as an artificial ligand for viral binding. The complementary functional moiety dibenzocyclooctyne (DBCO)/-conjugated PEI1.8K (PEI-DBCO) was coated on the lentiviral surface, which strengthened the virus-T cell interaction through DBCO/azide bioorthogonal chemistry.

Read More

Engineering Accuracy in CRISPR

Technologynetworks | April 16, 2019

Biomedical engineers at Duke University have developed a method for improving the accuracy of the CRISPR genome editing technology by an average of 50-fold. They believe it can be easily translated to any of the editing technology's continually expanding formats. The approach adds a short tail to the guide RNA which is used to identify a sequence of DNA for editing. This added tail folds back and binds onto itself, creating a "lock" that can only be undone by the targeted DNA sequence. The study appears online on April 15 in the journal Nature Biotechnology. "CRISPR is generally incredibly accurate, but there are examples that have shown off-target activity, so there's been broad interest across the field in increasing specificity," said Charles Gersbach, the Rooney Family Associate Professor of Biomedical Engineering at Duke. "But the solutions proposed thus far cannot be easily translated between different CRISPR systems." CRISPR/Cas9 is a defense system that bacteria use to target and cleave the DNA of invading viruses. While the first version of CRISPR technology engineered to work in human cells originated from a bacteria called Streptococcus pyogenes, many more bacteria species carry other versions. Scientists in the field have spent years looking for new CRISPR systems with desirable properties and are constantly adding to the CRISPR arsenal. For example, some systems are smaller and better able to fit inside of a viral vector to deliver to human cells for gene therapy. But no matter their individual abilities, all have produced unwanted genetic edits at times.

Read More

Oxitec Signs New Multi-year Development Agreement to Apply 2nd Generation Technology to Control Soybean Looper

Prnewswire | April 16, 2019

a UK-based biotechnology company that pioneered the use of biologically-engineered insects to control disease-spreading mosquitoes and crop-destroying agricultural pests and a wholly-owned subsidiary of Intrexon (NASDAQ: XON), has announced the signing of a new multi-year development agreement with a collaborator to develop a self-limiting soybean looper (Chrysodeixis includens) to suppress this damaging agricultural pest that is found throughout the Americas. Soybean looper threatens a variety of crops, primarily soybeans as well as cotton, sweet potatoes, peanuts, lettuce, herbs, tomato, tobacco, and others. It has been historically difficult to control due to growing insecticide resistance. Additionally, individual adult females can lay up to 700 eggs each in their lifetime, allowing a small number of insects to exponentially grow in a very short time span. Oxitec's self-limiting soybean looper will leverage the advantages and benefits of Oxitec's 2nd generation technology as part of their commitment to advancing a new global standard for targeted, safe pest management using self-limiting insects. "Soybean looper threatens crops in the Americas, especially in Brazil and the US, where current control tools are under pressure. It is necessary to rapidly deploy new, safe and targeted technologies," said Grey Frandsen, Chief Executive Officer at Oxitec. "Our targeted biologically-based approach offers the opportunity to suppress this major agricultural pest, prevent widespread crop losses and, perhaps most importantly, complement the newest generations of other valuable pest control methods." As the need for agricultural productivity increases, so does the need for novel pest management solutions. Oxitec's approach has the potential to counter against insects developing resistance to both new and existing methods of insect control.

Read More

Scientists develop artificial chemical receptor to assist viral transduction for T cell engineering

Phys.org | April 15, 2019

Engineered T cell immunotherapy, such as chimeric antigen receptor T cell (CAR-T) and T cell receptor T cell (TCR-T) therapy, has emerged as a potent therapeutic strategy for treating tumors. However, the genetic manipulation of primary T cells remains inefficient, especially during the clinical manufacturing process. There's an urgent need to develop a reliable method for the preparation of engineered T cells. A research team led by Prof. Cai Lintao at the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences and other collaborators developed a "safe, efficient and universal" technique based on bioorthogonal chemistry and glycol-metabolic labeling for viral-mediated engineered T cell manufacturing. Their findings were published in Advanced Functional Materials. In this strategy, the functional azide motifs were anchored on T cell surfaces via the intrinsic glycometabolism of exogenous azide-glucose, thus serving as an artificial ligand for viral binding. The complementary functional moiety dibenzocyclooctyne (DBCO)/-conjugated PEI1.8K (PEI-DBCO) was coated on the lentiviral surface, which strengthened the virus-T cell interaction through DBCO/azide bioorthogonal chemistry.

Read More

Engineering Accuracy in CRISPR

Technologynetworks | April 16, 2019

Biomedical engineers at Duke University have developed a method for improving the accuracy of the CRISPR genome editing technology by an average of 50-fold. They believe it can be easily translated to any of the editing technology's continually expanding formats. The approach adds a short tail to the guide RNA which is used to identify a sequence of DNA for editing. This added tail folds back and binds onto itself, creating a "lock" that can only be undone by the targeted DNA sequence. The study appears online on April 15 in the journal Nature Biotechnology. "CRISPR is generally incredibly accurate, but there are examples that have shown off-target activity, so there's been broad interest across the field in increasing specificity," said Charles Gersbach, the Rooney Family Associate Professor of Biomedical Engineering at Duke. "But the solutions proposed thus far cannot be easily translated between different CRISPR systems." CRISPR/Cas9 is a defense system that bacteria use to target and cleave the DNA of invading viruses. While the first version of CRISPR technology engineered to work in human cells originated from a bacteria called Streptococcus pyogenes, many more bacteria species carry other versions. Scientists in the field have spent years looking for new CRISPR systems with desirable properties and are constantly adding to the CRISPR arsenal. For example, some systems are smaller and better able to fit inside of a viral vector to deliver to human cells for gene therapy. But no matter their individual abilities, all have produced unwanted genetic edits at times.

Read More

Events