Better Defining Blood Stem Cells to Help Refine Treatments

| April 2, 2018

article image
As we develop and age, some of our tissues are replenished and repaired by adult, or tissue-specific, stem cells. These are specialized cells required throughout life that have the potential to give rise to all types of cells in a given tissue.Distinct tissues have unique types of adult stem cells. For example, hematopoietic stem cells (HSCs), also known as blood stem cells, give rise to all cell types in the blood and immune system. Strikingly, blood stem cells can be transplanted between individuals, and the healthy stem cells of the donor can replace the damaged cells of the recipient, leading to life-long replacement of the entire blood system.

Spotlight

Aptuit (Switzerland) AG / Exquiron

Exquiron is dedicated to contract research in early stage drug discovery. Our services span from assay development and adaptation for hit finding and profiling purposes to compound selection, high throughput screening, selectivity testing and hit characterization, and SAR expansion. Our scientists will work with you to identify the most suitable approach to reach your program milestones as rapidly, efficiently and economically as possible.

OTHER ARTICLES

Top 10 biotech IPOs in 2019

Article | February 24, 2020

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More
MEDICAL

Better Purification and Recovery in Bioprocessing

Article | February 24, 2020

In the downstream portion of any bioprocess, one must pick through the dross before one can seize the gold the biotherapeutic that the bioprocess was always meant to generate. Unfortunately, the dross is both voluminous and various. And the biotherapeutic gold, unlike real gold, is corruptible. That is, it can suffer structural damage and activity loss. When discarding the dross and collecting the gold, bioprocessors must be efficient and gentle. They must, to the extent possible, eliminate contaminants and organic debris while ensuring that biotherapeutics avoid aggregation-inducing stresses and retain their integrity during purification and recovery. Anything less compromises purity and reduces yield. To purify and recover biotherapeutics efficiently and gently, bioprocessors must avail themselves of the most appropriate tools and techniques. Here, we talk with several experts about which tools and techniques can help bioprocessors overcome persistent challenges. Some of these experts also touch on new approaches that can help bioprocessors address emerging challenges.

Read More

Ruminating on Bioprocessing 4.0

Article | February 24, 2020

The Bioprocessing 4.0 concept seeks to apply automation and technology to the digital transformation of biologics manufacturing. As the paradigm moves forward, it faces barriers to its adoption, according to Eric Langer, president of BioPlan Associates. “Perhaps the greatest challenges involve unsecured links and adapting the applications to areas where automation is critically needed today,” says Langer. “Unresolved security issues could seriously affect a company’s data in a regulated environment, so they will need to have iron-clad anti-hacking protection in place. Unfortunately, cyber security is not yet a top focus for the industry.”

Read More
DIAGNOSTICS

Making Predictions by Digitizing Bioprocessing

Article | February 24, 2020

With advances in data analytics and machine learning, the move from descriptive and diagnostic analytics to predictive and prescriptive analytics and controls—allowing us to better forecast and understand what will happen and thus optimize process outcomes—is not only feasible but inevitable, according to Bonnie Shum, principal engineer, pharma technical innovation, technology & manufacturing sciences and technology at Genentech. “Well-trained artificial intelligence systems can help drive better decision making and how data is analyzed from drug discovery to process development and to manufacturing processes,” she says. Those advances, though, only really matter when they improve the lives of patients. That’s exactly what Shum expects. “The convergence of digital transformation and operational/processing changes will be critical for the facilities of the future and meeting the needs of our patients,” she continues. “Digital solutions may one day provide fully automated bioprocessing, eliminating manual intervention and enabling us to anticipate potential process deviations to prevent process failures, leading to real-time release and thus faster access for patients.” To turn Bioprocessing 4.0 into a production line for precision healthcare, real-time release and quickly manufacturing personalized medicines will be critical. Adding digitization and advanced analytics wherever possible will drive those improvements. In fact, many of these improvements, especially moving from descriptive to predictive bioprocessing, depend on more digitization.

Read More

Spotlight

Aptuit (Switzerland) AG / Exquiron

Exquiron is dedicated to contract research in early stage drug discovery. Our services span from assay development and adaptation for hit finding and profiling purposes to compound selection, high throughput screening, selectivity testing and hit characterization, and SAR expansion. Our scientists will work with you to identify the most suitable approach to reach your program milestones as rapidly, efficiently and economically as possible.

Events