Beaver Feces Inspire a Way to Convert Type A to Type O Human Blood

Summarize the findings of an interesting new paper, enabling busy health care professionals to stay on top of the literature. I knew immediately the importance of an assignment from a few weeks ago – a team from the University of British Columbia had found a way to convert type A blood to type O. The report, in Nature Microbiology, details how they commandeered a pair of enzymes from a human gut bacterium.

Spotlight

QIAGEN

QIAGEN is the leading global provider of Sample to Insight solutions to transform biological materials into valuable molecular insights. QIAGEN sample technologies isolate and process DNA, RNA and proteins from blood, tissue and other materials. Assay technologies make these biomolecules visible and ready for analysis. Bioinformatics software and knowledge bases interpret data to report relevant, actionable insights. Automation solutions tie these together in seamless and cost-effective molecular testing workflows. QIAGEN provides these workflows to more than 500,000 customers around the world in Molecular Diagnostics (human healthcare), Applied Testing (forensics, veterinary testing and food safety), Pharma (pharmaceutical and biotechnology companies) and Academia (life sciences research).

OTHER ARTICLES
MedTech

Expansion of BioPharma: Opportunities and Investments

Article | July 12, 2022

Biopharmaceutical innovations are among the most ingenious and refined achievements of modern medical science. New concepts, techniques, and therapies are emerging, such as the cell therapy Provenge, which can be used to treat cancer, and gene therapies, which provide even more amazing promises of disease remission and regenerative medicine. In addition, the COVID-19 pandemic has caused a huge boom in the pharmaceutical industry. This is because more and more attention is being paid to increasing manufacturing capacity and starting new research on drug development. Biopharma: Leading the Way in the Pharma Sector In the past couple of years, the biopharmaceutical sector has deepened its roots across the medical and pharmaceutical industries, on account of the transformation of pharmaceutical companies towards biotechnology, creating opportunities for growth. Also, growing advancements in technologies such as 3D bioprinting, biosensors, and gene editing, along with the integration of advanced artificial intelligence and virtual and augmented reality are estimated to further create prospects for growth. According to a study, the biopharmaceutical sector makes nearly $163 billion around the world and grows by more than 8% each year, which is twice as fast as the traditional pharma sector. Massive Investments Directed Towards Biopharma Investing in biotech research and development (R&D) has yielded better returns than the pharma industry average. Hence, a number of pharmaceutical companies are shifting their presence toward biopharma to capitalize on the upcoming opportunities by investing in and expanding their biotechnology infrastructure. For instance, Thermo Fisher Scientific Inc., an American manufacturer of scientific instrumentation, reagents and consumables, and software services, announced an investment of $97 million to expand its bioanalytical laboratory operations into three new locations in the U.S. With this investment, the company will add 150,000 square feet of scientific workspace and install the most advanced drug development technologies to produce life-changing medicines for patients in need.

Read More
Medical

2 Small-Cap Biotech Stocks You Haven't Heard of, But Should Know About

Article | July 14, 2022

With everything that's going on with the COVID-19 pandemic, many healthcare companies have grabbed plenty of spotlight during these challenging times. At the same time, a number of otherwise promising businesses have slipped under the radar. That's especially true for small-cap biotech stocks that aren't actively involved in developing tests, vaccines or treatments for COVID-19. Vaccine developers, protective equipment producers, and healthcare service providers are all attracting plenty of attention during this pandemic, but there are just as many promising biotech stocks that aren't involved in these areas. Here are two such companies that you might have missed, but they deserve a spot on your watch list.

Read More
MedTech

AI and Biotechnology: The Future of Healthcare Industry

Article | July 11, 2022

Artificial intelligence has grasped the foundation in biotech. It can have the most innovative impact on biotechnology. AI has already established its presence in our day-to-day life. AI has made the existence of self-driving cars possible. Likewise, the benefits and quality that it can contribute to biotech can also be felt. With AI, bio technicians will be able to enhance virtual screening, overlook preliminary datasets from clinics, and decipher an enormous amount of information. It can also help in improving the medication process by gathering and analyzing every bit of information. The Significance of AI in Biotechnology In the past few years, the application of artificial intelligence in the biotechnology industry has shifted from being sci-fi to sci-fact. A vast number of biotech companies like Deep Genomics are adopting AI for making data-driven decisions and use analytics tools to work efficiently. Unlike the AI robots in sci-fi that are ready to take over the world. AI designed for biotech has been designed to solve certain problems or complete a bunch of tasks by using automated algorithms. The aim of AI technology for biotech is to collect insights along with hidden patterns from large amounts of data. All the different industries of biotech including agriculture, animal, medical, industrial, and bioinformatics are gradually being affected by artificial intelligence. Moreover, the biotech industry is realizing that AI enables them some of the important strength to their business, including: Expanding accessibility Cost-effectiveness Critical predictions Efficient decision-making Research centers like PwC have also estimated output of $15.7 trillion by 2030 solely with AI contribution in industries. A survey revealed that about 44% of life science experts are using AI for R&D activities, as well. Use of AI in Biotechnology Altering Biomedical and Clinical Data So far the most developed use of AI is its ability to read voluminous data records and interpret them. It can prove to be a life-save for bio technicians who would have to examine that much data from research publications by themselves for the validation of their hypothesis. With the help of AI, clinical studies of patients will also become easier as all the examination reports and prescriptions will be stored in one place for cross-reference. Furthermore, it will also help in blending and fetching data into usable formats for analysis. Test Result Prediction Through trial and error, AI along with machine learning can help in predicting the response of the patient to certain drugs to provide more effective outcomes. Drug Design & Discovery AI plays a vital role whether it’s designing a new molecule or identifying new biological targets. It helps in identifying and validating drugs. It reduces the cost and time spent on the entire drug trial process and reaches the market. Personalized Medications for Rare Diseases With the combination of body scan results, patients’ body and analytics, AI can also help in detecting dangerous diseases at an early stage. Improving Process of Manufacturing To improve the process of manufacturing in biotechnology, AI offers a wide range of opportunities. It controls quality, reduces wastage, improves useability, and minimizes the designing time. Moving Towards AI-Enhanced Biotech Future Ever since the concept of artificial intelligence has arrived, being curious by nature, humans have started working towards achieving this goal. It has been growing at a fast pace while showing unbelievable growth and achievements at times. In comparison to the traditional methods used in the biotechnology industry, AI-based methods seem more reliable and accurate. In the upcoming years, it will show its success by improving the quality of health people have. You can also develop your AI-based application or know more about it by taking IT consultations.

Read More

5 Biotech Stocks Winning the Coronavirus Race

Article | April 13, 2020

There are quite a few companies that have found ways to grow their business during the ongoing COVID-19 pandemic. This is especially true for a number of biotechs now working on developing a potential treatment for, or vaccine against, the virus; shares of such companies have largely surged over the past couple of months. Although many of these treatments and vaccines are still have quite a way to go before they're widely available, it's still worth taking some time to look through what's going on in the COVID-19 space right now. Here are five biotech stocks that are leading the way when it comes to addressing COVID-19. Regeneron Pharmaceuticals (NASDAQ:REGN) wasn't among the initial wave of companies to announce a potential COVID-19 drug. However, investor excitement quickly sent shares surging when the company announced that its rheumatoid arthritis drug, Kevzara, could help treat COVID-19 patients.

Read More

Spotlight

QIAGEN

QIAGEN is the leading global provider of Sample to Insight solutions to transform biological materials into valuable molecular insights. QIAGEN sample technologies isolate and process DNA, RNA and proteins from blood, tissue and other materials. Assay technologies make these biomolecules visible and ready for analysis. Bioinformatics software and knowledge bases interpret data to report relevant, actionable insights. Automation solutions tie these together in seamless and cost-effective molecular testing workflows. QIAGEN provides these workflows to more than 500,000 customers around the world in Molecular Diagnostics (human healthcare), Applied Testing (forensics, veterinary testing and food safety), Pharma (pharmaceutical and biotechnology companies) and Academia (life sciences research).

Related News

New strategy for cancer therapy spells double trouble for tumors

Medical Xpress | July 25, 2018

Scientists at Scripps Research have uncovered a new strategy to kill tumors, including some triple-negative breast cancers, without harming healthy cells, a discovery that could lead to more ways to treat tumors while reducing side effects. The study, published recently in Nature Communications, shows that a molecule in cells, called Rad52, repairs special kinds of damaged DNA that accumulate in some cancers. A future therapeutic could inhibit Rad52, robbing cancer cells of this repair mechanism. "This could give us a way to kill tumors without harming normal cells," says Xiaohua Wu, Ph.D., the professor at Scripps Research and senior author of the study. "That's the future. That's the goal for targeted cancer treatments—to make these treatments a part of precision medicine." Wu and her colleagues investigate how seemingly healthy cells become cancerous, with an eye toward leveraging differences between cancers and healthy cells to develop new therapeutic approaches. The culprits may be different from patient to patient, so the key to killing specific cancer types is to study the basic roles of proteins—and how things go awry in different cancers.

Read More

Rise of the clones study identifies inherited and acquired mutations that drive precancerous blood condition

Medical Xpress | July 11, 2018

A new study led by researchers at Harvard Medical School and the Harvard T.H. Chan School of Public Health has identified some of the first knowns inherited genetic variants that significantly raise a person's likelihood of developing clonal hematopoiesis, an age-related white blood cell condition linked with higher risk of certain blood cancers and cardiovascular disease.The findings, published online July 11 in Nature, should help illuminate several questions about clonal hematopoiesis: how it arises, why it occurs in more than 10 percent of people over 65 and how the genome we inherit influences the mutations we acquire later in life.

Read More

The mechanisms of genetic diversification in Candida albicans

Phys.org | July 10, 2018

Candida albicans is one of the most formidable fungal species infecting humans. Investigating the structure and reproduction methods of pathogenic populations can reveal how they emerge and spread. A team of scientists has sequenced and analyzed the genomes of 182 strains of C. albicans from around the world. They confirmed the clonal reproduction of this C. albicans and also showed that parasexual reproduction, previously only observed in a laboratory setting, contributes to its genetic diversity, and therefore also to its ability to adapt to new environments and rid itself of deleterious mutations.

Read More

New strategy for cancer therapy spells double trouble for tumors

Medical Xpress | July 25, 2018

Scientists at Scripps Research have uncovered a new strategy to kill tumors, including some triple-negative breast cancers, without harming healthy cells, a discovery that could lead to more ways to treat tumors while reducing side effects. The study, published recently in Nature Communications, shows that a molecule in cells, called Rad52, repairs special kinds of damaged DNA that accumulate in some cancers. A future therapeutic could inhibit Rad52, robbing cancer cells of this repair mechanism. "This could give us a way to kill tumors without harming normal cells," says Xiaohua Wu, Ph.D., the professor at Scripps Research and senior author of the study. "That's the future. That's the goal for targeted cancer treatments—to make these treatments a part of precision medicine." Wu and her colleagues investigate how seemingly healthy cells become cancerous, with an eye toward leveraging differences between cancers and healthy cells to develop new therapeutic approaches. The culprits may be different from patient to patient, so the key to killing specific cancer types is to study the basic roles of proteins—and how things go awry in different cancers.

Read More

Rise of the clones study identifies inherited and acquired mutations that drive precancerous blood condition

Medical Xpress | July 11, 2018

A new study led by researchers at Harvard Medical School and the Harvard T.H. Chan School of Public Health has identified some of the first knowns inherited genetic variants that significantly raise a person's likelihood of developing clonal hematopoiesis, an age-related white blood cell condition linked with higher risk of certain blood cancers and cardiovascular disease.The findings, published online July 11 in Nature, should help illuminate several questions about clonal hematopoiesis: how it arises, why it occurs in more than 10 percent of people over 65 and how the genome we inherit influences the mutations we acquire later in life.

Read More

The mechanisms of genetic diversification in Candida albicans

Phys.org | July 10, 2018

Candida albicans is one of the most formidable fungal species infecting humans. Investigating the structure and reproduction methods of pathogenic populations can reveal how they emerge and spread. A team of scientists has sequenced and analyzed the genomes of 182 strains of C. albicans from around the world. They confirmed the clonal reproduction of this C. albicans and also showed that parasexual reproduction, previously only observed in a laboratory setting, contributes to its genetic diversity, and therefore also to its ability to adapt to new environments and rid itself of deleterious mutations.

Read More

Events