Automating Your Sample Collection for Biobanking: 10 Things to Consider

|

article image
How do you determine if your inventory is automation friendly? Do you want to automate your biobank? Chances are if you didn't take into account automation in your biobank, there are some serious challenges ahead for you. In this eBook, we focus on 10 considerations every biobank should think about.

Spotlight

Vical

Vical develops biopharmaceutical products for the prevention and treatment of chronic or life-threatening infectious diseases, based on our patented DNA delivery technologies and other therapeutic approaches.

OTHER ARTICLES

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | February 12, 2020

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Top 10 biotech IPOs in 2019

Article | February 12, 2020

The big question at the start of 2019 was whether the IPO window would stay open for biotech companies, particularly those seeking to pull off ever-larger IPOs at increasingly earlier stages of development. The short answer is yes—kind of. Here’s the long answer: In the words of Renaissance Capital, the IPO market had “a mostly good year.” The total number of deals fell to 159 from 192 the year before, but technology and healthcare companies were standout performers. The latter—which include biotech, medtech and diagnostics companies—led the pack, making up 43% of all IPOs in 2019. By Renaissance’s count, seven companies went public at valuations exceeding $1 billion, up from five the year before

Read More

2 Small-Cap Biotech Stocks You Haven't Heard of, But Should Know About

Article | February 12, 2020

With everything that's going on with the COVID-19 pandemic, many healthcare companies have grabbed plenty of spotlight during these challenging times. At the same time, a number of otherwise promising businesses have slipped under the radar. That's especially true for small-cap biotech stocks that aren't actively involved in developing tests, vaccines or treatments for COVID-19. Vaccine developers, protective equipment producers, and healthcare service providers are all attracting plenty of attention during this pandemic, but there are just as many promising biotech stocks that aren't involved in these areas. Here are two such companies that you might have missed, but they deserve a spot on your watch list.

Read More

Selexis Cell Line Development Strategies

Article | February 12, 2020

In today’s biotechnology landscape, to be competitive, meet regulations, and achieve market demands, “we must apply Bioprocessing 4.0,” said Igor Fisch, PhD, CEO, Selexis. In fact, in the last decade, “Selexis has evolved from cloning by limiting dilution to automated cell selection to nanofluidic chips and from monoclonality assessment by statistical calculation to proprietary bioinformatic analysis,” he added. Single-use processing systems are an expanding part of the biomanufacturing world; as such, they are a major component of Bioprocessing 4.0. “At Selexis, we use single use throughout our cell line development workflow. Currently, we have incorporated single-use automated bioprocessing systems such as ambr® and the Beacon® optofluidic platform for accelerated cell line development. By using these systems and optimizing our parameters, we were able to achieve high titers in shake flasks. Additionally, the Beacon systems integrate miniaturized cell culture with high-throughput liquid handling automation and cell imaging. This allows us to control, adjust, and monitor programs at the same time,” noted Fisch.

Read More