Are There "Male" and "Female" Brains?

| June 18, 2018

article image
Men and women are different, of that there is no doubt. In neuroscience, there has been a lot of research into these differences, as they relate to treating neurological disorders. Women are more likely to have Alzheimer’s, depression and anxiety, so if scientists could find biological brain differences, that could be a path to finding treatments for some diseases.

Spotlight

Agendia, Inc.

Agendia is a leading molecular diagnostics company that develops and markets FFPE-based genomic diagnostic products, which help support physicians with their complex treatment decisions. Agendia’s tests were developed using an unbiased gene selection by analyzing the complete human genome. This includes MammaPrint as well as BluePrint, a molecular subtyping assay that provides deeper insight leading to more clinically actionable biology, TheraPrint, and TargetPrint, an ER/PR/HER2 expression assay. MammaPrint is the only breast cancer recurrence assay backed by peer-reviewed, prospective outcome data. These tests can help physicians assess a patient’s individual risk for metastasis, which patients may benefit from chemo, hormonal, or combination therapy, and which patients may not require these treatments and can instead be treated with other, less arduous and less costly methods.

OTHER ARTICLES

AI and Biotechnology: The Future of Healthcare Industry

Article | January 20, 2021

Artificial intelligence has grasped the foundation in biotech. It can have the most innovative impact on biotechnology. AI has already established its presence in our day-to-day life. AI has made the existence of self-driving cars possible. Likewise, the benefits and quality that it can contribute to biotech can also be felt. With AI, bio technicians will be able to enhance virtual screening, overlook preliminary datasets from clinics, and decipher an enormous amount of information. It can also help in improving the medication process by gathering and analyzing every bit of information. The Significance of AI in Biotechnology In the past few years, the application of artificial intelligence in the biotechnology industry has shifted from being sci-fi to sci-fact. A vast number of biotech companies like Deep Genomics are adopting AI for making data-driven decisions and use analytics tools to work efficiently. Unlike the AI robots in sci-fi that are ready to take over the world. AI designed for biotech has been designed to solve certain problems or complete a bunch of tasks by using automated algorithms. The aim of AI technology for biotech is to collect insights along with hidden patterns from large amounts of data. All the different industries of biotech including agriculture, animal, medical, industrial, and bioinformatics are gradually being affected by artificial intelligence. Moreover, the biotech industry is realizing that AI enables them some of the important strength to their business, including: Expanding accessibility Cost-effectiveness Critical predictions Efficient decision-making Research centers like PwC have also estimated output of $15.7 trillion by 2030 solely with AI contribution in industries. A survey revealed that about 44% of life science experts are using AI for R&D activities, as well. Use of AI in Biotechnology Altering Biomedical and Clinical Data So far the most developed use of AI is its ability to read voluminous data records and interpret them. It can prove to be a life-save for bio technicians who would have to examine that much data from research publications by themselves for the validation of their hypothesis. With the help of AI, clinical studies of patients will also become easier as all the examination reports and prescriptions will be stored in one place for cross-reference. Furthermore, it will also help in blending and fetching data into usable formats for analysis. Test Result Prediction Through trial and error, AI along with machine learning can help in predicting the response of the patient to certain drugs to provide more effective outcomes. Drug Design & Discovery AI plays a vital role whether it’s designing a new molecule or identifying new biological targets. It helps in identifying and validating drugs. It reduces the cost and time spent on the entire drug trial process and reaches the market. Personalized Medications for Rare Diseases With the combination of body scan results, patients’ body and analytics, AI can also help in detecting dangerous diseases at an early stage. Improving Process of Manufacturing To improve the process of manufacturing in biotechnology, AI offers a wide range of opportunities. It controls quality, reduces wastage, improves useability, and minimizes the designing time. Moving Towards AI-Enhanced Biotech Future Ever since the concept of artificial intelligence has arrived, being curious by nature, humans have started working towards achieving this goal. It has been growing at a fast pace while showing unbelievable growth and achievements at times. In comparison to the traditional methods used in the biotechnology industry, AI-based methods seem more reliable and accurate. In the upcoming years, it will show its success by improving the quality of health people have. You can also develop your AI-based application or know more about it by taking IT consultations.

Read More

Learning How FoxA2 Helps Turn Stem Cells into Organs

Article | March 18, 2020

Scientists at the Perelman School of Medicine at the University of Pennsylvania discovered early on in each cell, FoxA2 simultaneously binds to both the chromosomal proteins and the DNA, opening the flood gates for gene activation. The discovery, “Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones,” published in Nature Genetics, helps untangle mysteries of how embryonic stem cells develop into organs, according to the researchers. “Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. However, a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon,” write the investigators.

Read More

Closing bacterial genomes from the human gut microbiome using long-read sequencing

Article | February 12, 2020

In our lab, we focus on the impact of the gut microbiome on human health and disease. To evaluate this relationship, it’s important to understand the particular functions that different bacteria have. As bacteria are able to exchange, duplicate, and rearrange their genes in ways that directly affect their phenotypes, complete bacterial genomes assembled directly from human samples are essential to understand the strain variation and potential functions of the bacteria we host. Advances in the microbiome space have allowed for the de novo assembly of microbial genomes directly from metagenomes via short-read sequencing, assembly of reads into contigs, and binning of contigs into putative genome drafts. This is advantageous because it allows us to discover microbes without culturing them, directly from human samples and without reference databases. In the past year, there have been a number of tour de force efforts to broadly characterize the human gut microbiota through the creation of such metagenome-assembled genomes (MAGs)[1–4]. These works have produced hundreds of thousands of microbial genomes that vastly increase our understanding of the human gut. However, challenges in the assembly of short reads has limited our ability to correctly assemble repeated genomic elements and place them into genomic context. Thus, existing MAGs are often fragmented and do not include mobile genetic elements, 16S rRNA sequences, and other elements that are repeated or have high identity within and across bacterial genomes.

Read More

Ruminating on Bioprocessing 4.0

Article | February 18, 2020

The Bioprocessing 4.0 concept seeks to apply automation and technology to the digital transformation of biologics manufacturing. As the paradigm moves forward, it faces barriers to its adoption, according to Eric Langer, president of BioPlan Associates. “Perhaps the greatest challenges involve unsecured links and adapting the applications to areas where automation is critically needed today,” says Langer. “Unresolved security issues could seriously affect a company’s data in a regulated environment, so they will need to have iron-clad anti-hacking protection in place. Unfortunately, cyber security is not yet a top focus for the industry.”

Read More

Spotlight

Agendia, Inc.

Agendia is a leading molecular diagnostics company that develops and markets FFPE-based genomic diagnostic products, which help support physicians with their complex treatment decisions. Agendia’s tests were developed using an unbiased gene selection by analyzing the complete human genome. This includes MammaPrint as well as BluePrint, a molecular subtyping assay that provides deeper insight leading to more clinically actionable biology, TheraPrint, and TargetPrint, an ER/PR/HER2 expression assay. MammaPrint is the only breast cancer recurrence assay backed by peer-reviewed, prospective outcome data. These tests can help physicians assess a patient’s individual risk for metastasis, which patients may benefit from chemo, hormonal, or combination therapy, and which patients may not require these treatments and can instead be treated with other, less arduous and less costly methods.

Events